@inproceedings{yeom-etal-2025-tagged,
title = "Tagged Span Annotation for Detecting Translation Errors in Reasoning {LLM}s",
author = "Yeom, Taemin and
Ryu, Yonghyun and
Choi, Yoonjung and
Bak, Jinyeong",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.62/",
pages = "878--886",
ISBN = "979-8-89176-341-8",
abstract = "We present the AIP team{'}s submission to the WMT 2025 Unified MT Evaluation SharedTask, focusing on the span-level error detection subtask. Our system emphasizes response format design to better harness the capabilities of OpenAI{'}s o3, the state-of-the-art reasoning LLM. To this end, we introduce Tagged SpanAnnotation (TSA), an annotation scheme designed to more accurately extract span-level information from the LLM. On our refined version of WMT24 ESA dataset, our reference-free method achieves an F1 score of approximately 27 for character-level label prediction, outperforming the reference-based XCOMET-XXL at approximately 17."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yeom-etal-2025-tagged">
<titleInfo>
<title>Tagged Span Annotation for Detecting Translation Errors in Reasoning LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Taemin</namePart>
<namePart type="family">Yeom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonghyun</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoonjung</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinyeong</namePart>
<namePart type="family">Bak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>We present the AIP team’s submission to the WMT 2025 Unified MT Evaluation SharedTask, focusing on the span-level error detection subtask. Our system emphasizes response format design to better harness the capabilities of OpenAI’s o3, the state-of-the-art reasoning LLM. To this end, we introduce Tagged SpanAnnotation (TSA), an annotation scheme designed to more accurately extract span-level information from the LLM. On our refined version of WMT24 ESA dataset, our reference-free method achieves an F1 score of approximately 27 for character-level label prediction, outperforming the reference-based XCOMET-XXL at approximately 17.</abstract>
<identifier type="citekey">yeom-etal-2025-tagged</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.62/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>878</start>
<end>886</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tagged Span Annotation for Detecting Translation Errors in Reasoning LLMs
%A Yeom, Taemin
%A Ryu, Yonghyun
%A Choi, Yoonjung
%A Bak, Jinyeong
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F yeom-etal-2025-tagged
%X We present the AIP team’s submission to the WMT 2025 Unified MT Evaluation SharedTask, focusing on the span-level error detection subtask. Our system emphasizes response format design to better harness the capabilities of OpenAI’s o3, the state-of-the-art reasoning LLM. To this end, we introduce Tagged SpanAnnotation (TSA), an annotation scheme designed to more accurately extract span-level information from the LLM. On our refined version of WMT24 ESA dataset, our reference-free method achieves an F1 score of approximately 27 for character-level label prediction, outperforming the reference-based XCOMET-XXL at approximately 17.
%U https://aclanthology.org/2025.wmt-1.62/
%P 878-886
Markdown (Informal)
[Tagged Span Annotation for Detecting Translation Errors in Reasoning LLMs](https://aclanthology.org/2025.wmt-1.62/) (Yeom et al., WMT 2025)
ACL