@inproceedings{knowles-etal-2025-mslc25,
title = "{MSLC}25: Metric Performance on Low-Quality Machine Translation, Empty Strings, and Language Variants",
author = "Knowles, Rebecca and
Larkin, Samuel and
Lo, Chi-Kiu",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.69/",
pages = "945--956",
ISBN = "979-8-89176-341-8",
abstract = "In this challenge set, we examine how automatic metrics for machine translation perform on a wide variety of machine translation output, covering a wider range of quality than the WMT submissions. We also explore metric results on specific types of corner cases, such as empty strings, wrong- or mixed-language text, and more. We primarily focus on Japanese{--}Chinese data, with some work on English and Czech."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="knowles-etal-2025-mslc25">
<titleInfo>
<title>MSLC25: Metric Performance on Low-Quality Machine Translation, Empty Strings, and Language Variants</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Knowles</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Larkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chi-Kiu</namePart>
<namePart type="family">Lo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>In this challenge set, we examine how automatic metrics for machine translation perform on a wide variety of machine translation output, covering a wider range of quality than the WMT submissions. We also explore metric results on specific types of corner cases, such as empty strings, wrong- or mixed-language text, and more. We primarily focus on Japanese–Chinese data, with some work on English and Czech.</abstract>
<identifier type="citekey">knowles-etal-2025-mslc25</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.69/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>945</start>
<end>956</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MSLC25: Metric Performance on Low-Quality Machine Translation, Empty Strings, and Language Variants
%A Knowles, Rebecca
%A Larkin, Samuel
%A Lo, Chi-Kiu
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F knowles-etal-2025-mslc25
%X In this challenge set, we examine how automatic metrics for machine translation perform on a wide variety of machine translation output, covering a wider range of quality than the WMT submissions. We also explore metric results on specific types of corner cases, such as empty strings, wrong- or mixed-language text, and more. We primarily focus on Japanese–Chinese data, with some work on English and Czech.
%U https://aclanthology.org/2025.wmt-1.69/
%P 945-956
Markdown (Informal)
[MSLC25: Metric Performance on Low-Quality Machine Translation, Empty Strings, and Language Variants](https://aclanthology.org/2025.wmt-1.69/) (Knowles et al., WMT 2025)
ACL