@inproceedings{sharma-2025-quality,
title = "Quality-Informed Segment-Level Error Correction Using Natural Language Explanations from x{T}ower and Large Language Models",
author = "Sharma, Prashant",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.75/",
pages = "999--1003",
ISBN = "979-8-89176-341-8",
abstract = "This paper describes our submission to the WMT25 Automated Translation Quality Evaluation Systems Task 3 - QE-informed Segment-level Error Correction. We propose a two-step approach for Automatic Post-Editing (APE) that leverages natural language explanations of translation errors. Our method first utilises the xTower model to generate a descriptive explanation of the errors present in a machine-translated segment, given the source text, the machine translation, and quality estimation annotations. This explanation is then provided as a prompt to a powerful Large Language Model, Gemini 1.5 Pro, which generates the final, corrected translation. This approach is inspired by recent work in edit-based APE and aims to improve the interpretability and performance of APE systems. We Evaluated across six language pairs (EN{\textrightarrow}ZH, EN{\textrightarrow}CS, EN{\textrightarrow}IS, EN{\textrightarrow}JA, EN{\textrightarrow}RU, EN{\textrightarrow}UK), our approach demonstrates promising results, especially in cases requiring fine-grained edits."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sharma-2025-quality">
<titleInfo>
<title>Quality-Informed Segment-Level Error Correction Using Natural Language Explanations from xTower and Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Prashant</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>This paper describes our submission to the WMT25 Automated Translation Quality Evaluation Systems Task 3 - QE-informed Segment-level Error Correction. We propose a two-step approach for Automatic Post-Editing (APE) that leverages natural language explanations of translation errors. Our method first utilises the xTower model to generate a descriptive explanation of the errors present in a machine-translated segment, given the source text, the machine translation, and quality estimation annotations. This explanation is then provided as a prompt to a powerful Large Language Model, Gemini 1.5 Pro, which generates the final, corrected translation. This approach is inspired by recent work in edit-based APE and aims to improve the interpretability and performance of APE systems. We Evaluated across six language pairs (EN→ZH, EN→CS, EN→IS, EN→JA, EN→RU, EN→UK), our approach demonstrates promising results, especially in cases requiring fine-grained edits.</abstract>
<identifier type="citekey">sharma-2025-quality</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.75/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>999</start>
<end>1003</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quality-Informed Segment-Level Error Correction Using Natural Language Explanations from xTower and Large Language Models
%A Sharma, Prashant
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F sharma-2025-quality
%X This paper describes our submission to the WMT25 Automated Translation Quality Evaluation Systems Task 3 - QE-informed Segment-level Error Correction. We propose a two-step approach for Automatic Post-Editing (APE) that leverages natural language explanations of translation errors. Our method first utilises the xTower model to generate a descriptive explanation of the errors present in a machine-translated segment, given the source text, the machine translation, and quality estimation annotations. This explanation is then provided as a prompt to a powerful Large Language Model, Gemini 1.5 Pro, which generates the final, corrected translation. This approach is inspired by recent work in edit-based APE and aims to improve the interpretability and performance of APE systems. We Evaluated across six language pairs (EN→ZH, EN→CS, EN→IS, EN→JA, EN→RU, EN→UK), our approach demonstrates promising results, especially in cases requiring fine-grained edits.
%U https://aclanthology.org/2025.wmt-1.75/
%P 999-1003
Markdown (Informal)
[Quality-Informed Segment-Level Error Correction Using Natural Language Explanations from xTower and Large Language Models](https://aclanthology.org/2025.wmt-1.75/) (Sharma, WMT 2025)
ACL