@inproceedings{oktem-etal-2025-correcting,
title = "Correcting the Tamazight Portions of {FLORES}+ and {OLDI} Seed Datasets",
author = "Oktem, Alp and
Farhi, Mohamed Aymane and
Essaidi, Brahim and
Jabouja, Naceur and
Boudichat, Farida",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.82/",
pages = "1072--1080",
ISBN = "979-8-89176-341-8",
abstract = "We present the manual correction of the Tamazight portions of the FLORES+ and OLDI Seed datasets to improve the quality of open machine translation resources for the language. These widely used reference corpora contained numerous issues, including mistranslations, orthographic inconsistencies, overuse of loanwords, and non-standard transliterations. Overall, 36{\%} of FLORES+ and 40{\%} of Seed sentences were corrected by expert linguists, with average token divergence of 19{\%} and 25{\%} among changed items. Evaluation of multiple MT systems, including NLLB models and commercial LLM services, showed consistent gains in automated evaluation metrics when using the corrected data. Fine-tuning NLLB-600M on the revised Seed corpus yielded improvements of +6.05 chrF (en{\textrightarrow}zgh) and +2.32 (zgh{\textrightarrow}en), outperforming larger parameter models and LLM providers in en{\textrightarrow}zgh direction."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="oktem-etal-2025-correcting">
<titleInfo>
<title>Correcting the Tamazight Portions of FLORES+ and OLDI Seed Datasets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alp</namePart>
<namePart type="family">Oktem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="given">Aymane</namePart>
<namePart type="family">Farhi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brahim</namePart>
<namePart type="family">Essaidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naceur</namePart>
<namePart type="family">Jabouja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farida</namePart>
<namePart type="family">Boudichat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>We present the manual correction of the Tamazight portions of the FLORES+ and OLDI Seed datasets to improve the quality of open machine translation resources for the language. These widely used reference corpora contained numerous issues, including mistranslations, orthographic inconsistencies, overuse of loanwords, and non-standard transliterations. Overall, 36% of FLORES+ and 40% of Seed sentences were corrected by expert linguists, with average token divergence of 19% and 25% among changed items. Evaluation of multiple MT systems, including NLLB models and commercial LLM services, showed consistent gains in automated evaluation metrics when using the corrected data. Fine-tuning NLLB-600M on the revised Seed corpus yielded improvements of +6.05 chrF (en→zgh) and +2.32 (zgh→en), outperforming larger parameter models and LLM providers in en→zgh direction.</abstract>
<identifier type="citekey">oktem-etal-2025-correcting</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.82/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1072</start>
<end>1080</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Correcting the Tamazight Portions of FLORES+ and OLDI Seed Datasets
%A Oktem, Alp
%A Farhi, Mohamed Aymane
%A Essaidi, Brahim
%A Jabouja, Naceur
%A Boudichat, Farida
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F oktem-etal-2025-correcting
%X We present the manual correction of the Tamazight portions of the FLORES+ and OLDI Seed datasets to improve the quality of open machine translation resources for the language. These widely used reference corpora contained numerous issues, including mistranslations, orthographic inconsistencies, overuse of loanwords, and non-standard transliterations. Overall, 36% of FLORES+ and 40% of Seed sentences were corrected by expert linguists, with average token divergence of 19% and 25% among changed items. Evaluation of multiple MT systems, including NLLB models and commercial LLM services, showed consistent gains in automated evaluation metrics when using the corrected data. Fine-tuning NLLB-600M on the revised Seed corpus yielded improvements of +6.05 chrF (en→zgh) and +2.32 (zgh→en), outperforming larger parameter models and LLM providers in en→zgh direction.
%U https://aclanthology.org/2025.wmt-1.82/
%P 1072-1080
Markdown (Informal)
[Correcting the Tamazight Portions of FLORES+ and OLDI Seed Datasets](https://aclanthology.org/2025.wmt-1.82/) (Oktem et al., WMT 2025)
ACL