@inproceedings{rajcoomar-2025-kozkreolmru,
title = "{K}oz{K}reol{MRU} {WMT} 2025 {C}reole{MT} System Description: Koz Kreol: Multi-Stage Training for {E}nglish{--}Mauritian Creole {MT}",
author = "Rajcoomar, Yush",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.92/",
pages = "1183--1190",
ISBN = "979-8-89176-341-8",
abstract = "Mauritian Creole (Kreol Morisyen), spoken by approximately 1.5 million people worldwide, faces significant challenges in digital language technology due to limited computational resources. This paper presents ``Koz Kreol'', a comprehensive approach to English{--}Mauritian Creole machine translation using a three-stage training methodology: monolingual pretraining, parallel data training, and LoRA fine-tuning. We achieve state-of-the-art results with a 28.82 BLEU score for EN{\textrightarrow}MFE translation, representing a 74{\%} improvement over ChatGPT-4o. Our work addresses critical data scarcity through the use of existing datasets, synthetic data generation, and community-sourced translations. The methodology provides a replicable framework for other low-resource Creole languages while supporting digital inclusion and cultural preservation for the Mauritian community. This paper consists of both a systems and data subtask submission as part of a Creole MT Shared Task."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rajcoomar-2025-kozkreolmru">
<titleInfo>
<title>KozKreolMRU WMT 2025 CreoleMT System Description: Koz Kreol: Multi-Stage Training for English–Mauritian Creole MT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yush</namePart>
<namePart type="family">Rajcoomar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>Mauritian Creole (Kreol Morisyen), spoken by approximately 1.5 million people worldwide, faces significant challenges in digital language technology due to limited computational resources. This paper presents “Koz Kreol”, a comprehensive approach to English–Mauritian Creole machine translation using a three-stage training methodology: monolingual pretraining, parallel data training, and LoRA fine-tuning. We achieve state-of-the-art results with a 28.82 BLEU score for EN→MFE translation, representing a 74% improvement over ChatGPT-4o. Our work addresses critical data scarcity through the use of existing datasets, synthetic data generation, and community-sourced translations. The methodology provides a replicable framework for other low-resource Creole languages while supporting digital inclusion and cultural preservation for the Mauritian community. This paper consists of both a systems and data subtask submission as part of a Creole MT Shared Task.</abstract>
<identifier type="citekey">rajcoomar-2025-kozkreolmru</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.92/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1183</start>
<end>1190</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KozKreolMRU WMT 2025 CreoleMT System Description: Koz Kreol: Multi-Stage Training for English–Mauritian Creole MT
%A Rajcoomar, Yush
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F rajcoomar-2025-kozkreolmru
%X Mauritian Creole (Kreol Morisyen), spoken by approximately 1.5 million people worldwide, faces significant challenges in digital language technology due to limited computational resources. This paper presents “Koz Kreol”, a comprehensive approach to English–Mauritian Creole machine translation using a three-stage training methodology: monolingual pretraining, parallel data training, and LoRA fine-tuning. We achieve state-of-the-art results with a 28.82 BLEU score for EN→MFE translation, representing a 74% improvement over ChatGPT-4o. Our work addresses critical data scarcity through the use of existing datasets, synthetic data generation, and community-sourced translations. The methodology provides a replicable framework for other low-resource Creole languages while supporting digital inclusion and cultural preservation for the Mauritian community. This paper consists of both a systems and data subtask submission as part of a Creole MT Shared Task.
%U https://aclanthology.org/2025.wmt-1.92/
%P 1183-1190
Markdown (Informal)
[KozKreolMRU WMT 2025 CreoleMT System Description: Koz Kreol: Multi-Stage Training for English–Mauritian Creole MT](https://aclanthology.org/2025.wmt-1.92/) (Rajcoomar, WMT 2025)
ACL