@inproceedings{masumi-etal-2025-fabert,
title = "{F}a{BERT}: Pre-training {BERT} on {P}ersian Blogs",
author = "Masumi, Mostafa and
Majd, Seyed Soroush and
Shamsfard, Mehrnoush and
Beigy, Hamid",
editor = "Bak, JinYeong and
Goot, Rob van der and
Jang, Hyeju and
Buaphet, Weerayut and
Ramponi, Alan and
Xu, Wei and
Ritter, Alan",
booktitle = "Proceedings of the Tenth Workshop on Noisy and User-generated Text",
month = may,
year = "2025",
address = "Albuquerque, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wnut-1.10/",
doi = "10.18653/v1/2025.wnut-1.10",
pages = "85--96",
ISBN = "979-8-89176-232-9",
abstract = "We introduce FaBERT, a Persian BERT-base model pre-trained on the HmBlogs corpus, encompassing both informal and formal Persian texts. FaBERT is designed to excel in traditional Natural Language Understanding (NLU) tasks, addressing the intricacies of diverse sentence structures and linguistic styles prevalent in the Persian language. In our comprehensive evaluation of FaBERT on 12 datasets in various downstream tasks, encompassing Sentiment Analysis (SA), Named Entity Recognition (NER), Natural Language Inference (NLI), Question Answering (QA), and Question Paraphrasing (QP), it consistently demonstrated improved performance, all achieved within a compact model size. The findings highlight the importance of utilizing diverse corpora, such as HmBlogs, to enhance the performance of language models like BERT in Persian Natural Language Processing (NLP) applications."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="masumi-etal-2025-fabert">
<titleInfo>
<title>FaBERT: Pre-training BERT on Persian Blogs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mostafa</namePart>
<namePart type="family">Masumi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seyed</namePart>
<namePart type="given">Soroush</namePart>
<namePart type="family">Majd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehrnoush</namePart>
<namePart type="family">Shamsfard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamid</namePart>
<namePart type="family">Beigy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Workshop on Noisy and User-generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">JinYeong</namePart>
<namePart type="family">Bak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="given">van</namePart>
<namePart type="given">der</namePart>
<namePart type="family">Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyeju</namePart>
<namePart type="family">Jang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weerayut</namePart>
<namePart type="family">Buaphet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ramponi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-232-9</identifier>
</relatedItem>
<abstract>We introduce FaBERT, a Persian BERT-base model pre-trained on the HmBlogs corpus, encompassing both informal and formal Persian texts. FaBERT is designed to excel in traditional Natural Language Understanding (NLU) tasks, addressing the intricacies of diverse sentence structures and linguistic styles prevalent in the Persian language. In our comprehensive evaluation of FaBERT on 12 datasets in various downstream tasks, encompassing Sentiment Analysis (SA), Named Entity Recognition (NER), Natural Language Inference (NLI), Question Answering (QA), and Question Paraphrasing (QP), it consistently demonstrated improved performance, all achieved within a compact model size. The findings highlight the importance of utilizing diverse corpora, such as HmBlogs, to enhance the performance of language models like BERT in Persian Natural Language Processing (NLP) applications.</abstract>
<identifier type="citekey">masumi-etal-2025-fabert</identifier>
<identifier type="doi">10.18653/v1/2025.wnut-1.10</identifier>
<location>
<url>https://aclanthology.org/2025.wnut-1.10/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>85</start>
<end>96</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FaBERT: Pre-training BERT on Persian Blogs
%A Masumi, Mostafa
%A Majd, Seyed Soroush
%A Shamsfard, Mehrnoush
%A Beigy, Hamid
%Y Bak, JinYeong
%Y Goot, Rob van der
%Y Jang, Hyeju
%Y Buaphet, Weerayut
%Y Ramponi, Alan
%Y Xu, Wei
%Y Ritter, Alan
%S Proceedings of the Tenth Workshop on Noisy and User-generated Text
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico, USA
%@ 979-8-89176-232-9
%F masumi-etal-2025-fabert
%X We introduce FaBERT, a Persian BERT-base model pre-trained on the HmBlogs corpus, encompassing both informal and formal Persian texts. FaBERT is designed to excel in traditional Natural Language Understanding (NLU) tasks, addressing the intricacies of diverse sentence structures and linguistic styles prevalent in the Persian language. In our comprehensive evaluation of FaBERT on 12 datasets in various downstream tasks, encompassing Sentiment Analysis (SA), Named Entity Recognition (NER), Natural Language Inference (NLI), Question Answering (QA), and Question Paraphrasing (QP), it consistently demonstrated improved performance, all achieved within a compact model size. The findings highlight the importance of utilizing diverse corpora, such as HmBlogs, to enhance the performance of language models like BERT in Persian Natural Language Processing (NLP) applications.
%R 10.18653/v1/2025.wnut-1.10
%U https://aclanthology.org/2025.wnut-1.10/
%U https://doi.org/10.18653/v1/2025.wnut-1.10
%P 85-96
Markdown (Informal)
[FaBERT: Pre-training BERT on Persian Blogs](https://aclanthology.org/2025.wnut-1.10/) (Masumi et al., WNUT 2025)
ACL
- Mostafa Masumi, Seyed Soroush Majd, Mehrnoush Shamsfard, and Hamid Beigy. 2025. FaBERT: Pre-training BERT on Persian Blogs. In Proceedings of the Tenth Workshop on Noisy and User-generated Text, pages 85–96, Albuquerque, New Mexico, USA. Association for Computational Linguistics.