@inproceedings{ozaki-etal-2025-structure,
title = "Structure Modeling Approach for {UD} Parsing of Historical {M}odern {J}apanese",
author = "Ozaki, Hiroaki and
Omura, Mai and
Komiya, Kanako and
Asahara, Masayuki and
Ogiso, Toshinobu",
editor = "Fei, Hao and
Tu, Kewei and
Zhang, Yuhui and
Hu, Xiang and
Han, Wenjuan and
Jia, Zixia and
Zheng, Zilong and
Cao, Yixin and
Zhang, Meishan and
Lu, Wei and
Siddharth, N. and
{\O}vrelid, Lilja and
Xue, Nianwen and
Zhang, Yue",
booktitle = "Proceedings of the 1st Joint Workshop on Large Language Models and Structure Modeling (XLLM 2025)",
month = aug,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.xllm-1.12/",
doi = "10.18653/v1/2025.xllm-1.12",
pages = "106--114",
ISBN = "979-8-89176-286-2",
abstract = "This study shows the effectiveness of structure modeling for transfer ability in diachronic syntactic parsing. The syntactic parsing for historical languages is significant from a humanities and quantitative linguistics perspective to enable annotation support and analysis on unannotated documents.We compared the zero-shot transfer ability between Transformer-based Biaffine UD parsers and our structure modeling approach. The structure modeling approach is a pipeline method consisting with dictionary-based morphological analysis (MeCab), a deep learning-based phrase (bunsetsu) analysis (Monaka), SVM-based phrase dependency parsing (CaboCha) and a rule-based conversion from phrase dependencies to UD.This pipeline closely follows the methodology used in constructing Japanese UD corpora.Experimental results showed that the structure modeling approach outperformed zero-shot transfer from the contemporary to the modern Japanese. Moreover, the structure modeling approach outperformed several existing UD parsers in contemporary Japanese. To this end, the structure modeling approach outperformed in the diachronic transfer of Japanese by a wide margin and was useful to those applications for digital humanities and quantitative linguistics."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ozaki-etal-2025-structure">
<titleInfo>
<title>Structure Modeling Approach for UD Parsing of Historical Modern Japanese</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hiroaki</namePart>
<namePart type="family">Ozaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mai</namePart>
<namePart type="family">Omura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kanako</namePart>
<namePart type="family">Komiya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masayuki</namePart>
<namePart type="family">Asahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toshinobu</namePart>
<namePart type="family">Ogiso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Joint Workshop on Large Language Models and Structure Modeling (XLLM 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Fei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kewei</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuhui</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjuan</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zixia</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zilong</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixin</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meishan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Siddharth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lilja</namePart>
<namePart type="family">Øvrelid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-286-2</identifier>
</relatedItem>
<abstract>This study shows the effectiveness of structure modeling for transfer ability in diachronic syntactic parsing. The syntactic parsing for historical languages is significant from a humanities and quantitative linguistics perspective to enable annotation support and analysis on unannotated documents.We compared the zero-shot transfer ability between Transformer-based Biaffine UD parsers and our structure modeling approach. The structure modeling approach is a pipeline method consisting with dictionary-based morphological analysis (MeCab), a deep learning-based phrase (bunsetsu) analysis (Monaka), SVM-based phrase dependency parsing (CaboCha) and a rule-based conversion from phrase dependencies to UD.This pipeline closely follows the methodology used in constructing Japanese UD corpora.Experimental results showed that the structure modeling approach outperformed zero-shot transfer from the contemporary to the modern Japanese. Moreover, the structure modeling approach outperformed several existing UD parsers in contemporary Japanese. To this end, the structure modeling approach outperformed in the diachronic transfer of Japanese by a wide margin and was useful to those applications for digital humanities and quantitative linguistics.</abstract>
<identifier type="citekey">ozaki-etal-2025-structure</identifier>
<identifier type="doi">10.18653/v1/2025.xllm-1.12</identifier>
<location>
<url>https://aclanthology.org/2025.xllm-1.12/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>106</start>
<end>114</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Structure Modeling Approach for UD Parsing of Historical Modern Japanese
%A Ozaki, Hiroaki
%A Omura, Mai
%A Komiya, Kanako
%A Asahara, Masayuki
%A Ogiso, Toshinobu
%Y Fei, Hao
%Y Tu, Kewei
%Y Zhang, Yuhui
%Y Hu, Xiang
%Y Han, Wenjuan
%Y Jia, Zixia
%Y Zheng, Zilong
%Y Cao, Yixin
%Y Zhang, Meishan
%Y Lu, Wei
%Y Siddharth, N.
%Y Øvrelid, Lilja
%Y Xue, Nianwen
%Y Zhang, Yue
%S Proceedings of the 1st Joint Workshop on Large Language Models and Structure Modeling (XLLM 2025)
%D 2025
%8 August
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-286-2
%F ozaki-etal-2025-structure
%X This study shows the effectiveness of structure modeling for transfer ability in diachronic syntactic parsing. The syntactic parsing for historical languages is significant from a humanities and quantitative linguistics perspective to enable annotation support and analysis on unannotated documents.We compared the zero-shot transfer ability between Transformer-based Biaffine UD parsers and our structure modeling approach. The structure modeling approach is a pipeline method consisting with dictionary-based morphological analysis (MeCab), a deep learning-based phrase (bunsetsu) analysis (Monaka), SVM-based phrase dependency parsing (CaboCha) and a rule-based conversion from phrase dependencies to UD.This pipeline closely follows the methodology used in constructing Japanese UD corpora.Experimental results showed that the structure modeling approach outperformed zero-shot transfer from the contemporary to the modern Japanese. Moreover, the structure modeling approach outperformed several existing UD parsers in contemporary Japanese. To this end, the structure modeling approach outperformed in the diachronic transfer of Japanese by a wide margin and was useful to those applications for digital humanities and quantitative linguistics.
%R 10.18653/v1/2025.xllm-1.12
%U https://aclanthology.org/2025.xllm-1.12/
%U https://doi.org/10.18653/v1/2025.xllm-1.12
%P 106-114
Markdown (Informal)
[Structure Modeling Approach for UD Parsing of Historical Modern Japanese](https://aclanthology.org/2025.xllm-1.12/) (Ozaki et al., XLLM 2025)
ACL