@inproceedings{sucal-2025-multimodal,
title = "Multimodal Agentic Dialogue Systems for Situated Human-Robot Interaction",
author = "Sucal, Virgile",
editor = "Whetten, Ryan and
Sucal, Virgile and
Ngo, Anh and
Chalamalasetti, Kranti and
Inoue, Koji and
Cimino, Gaetano and
Yang, Zachary and
Zenimoto, Yuki and
Rodriguez, Ricardo",
booktitle = "Proceedings of the 21st Workshop of Young Researchers' Roundtable on Spoken Dialogue Systems",
month = aug,
year = "2025",
address = "Avignon, France",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.yrrsds-1.8/",
pages = "20--24",
abstract = "This position paper presents the integration of dialogue systems into situated robotics, emphasizing the use of contextual information{---}particularly audiovisual perceptions{---}to inform dialogue policies. A central objective is the development of interaction policies that dynamically select contextually appropriate actions aligned with the user{'}s intentions and needs. The works presented in this paper explore proactive decision-making mechanisms in multimodal interaction settings and seek to enhance robotic expressiveness through nonverbal communication cues. Current efforts focus on evaluating and comparing approaches such as agentic workflows and reinforcement learning within a unified framework, aiming to facilitate more consistent and contextually aware human{--}robot interaction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sucal-2025-multimodal">
<titleInfo>
<title>Multimodal Agentic Dialogue Systems for Situated Human-Robot Interaction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Virgile</namePart>
<namePart type="family">Sucal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Workshop of Young Researchers’ Roundtable on Spoken Dialogue Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Whetten</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Virgile</namePart>
<namePart type="family">Sucal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anh</namePart>
<namePart type="family">Ngo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kranti</namePart>
<namePart type="family">Chalamalasetti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koji</namePart>
<namePart type="family">Inoue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaetano</namePart>
<namePart type="family">Cimino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zachary</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Zenimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ricardo</namePart>
<namePart type="family">Rodriguez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Avignon, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This position paper presents the integration of dialogue systems into situated robotics, emphasizing the use of contextual information—particularly audiovisual perceptions—to inform dialogue policies. A central objective is the development of interaction policies that dynamically select contextually appropriate actions aligned with the user’s intentions and needs. The works presented in this paper explore proactive decision-making mechanisms in multimodal interaction settings and seek to enhance robotic expressiveness through nonverbal communication cues. Current efforts focus on evaluating and comparing approaches such as agentic workflows and reinforcement learning within a unified framework, aiming to facilitate more consistent and contextually aware human–robot interaction.</abstract>
<identifier type="citekey">sucal-2025-multimodal</identifier>
<location>
<url>https://aclanthology.org/2025.yrrsds-1.8/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>20</start>
<end>24</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multimodal Agentic Dialogue Systems for Situated Human-Robot Interaction
%A Sucal, Virgile
%Y Whetten, Ryan
%Y Sucal, Virgile
%Y Ngo, Anh
%Y Chalamalasetti, Kranti
%Y Inoue, Koji
%Y Cimino, Gaetano
%Y Yang, Zachary
%Y Zenimoto, Yuki
%Y Rodriguez, Ricardo
%S Proceedings of the 21st Workshop of Young Researchers’ Roundtable on Spoken Dialogue Systems
%D 2025
%8 August
%I Association for Computational Linguistics
%C Avignon, France
%F sucal-2025-multimodal
%X This position paper presents the integration of dialogue systems into situated robotics, emphasizing the use of contextual information—particularly audiovisual perceptions—to inform dialogue policies. A central objective is the development of interaction policies that dynamically select contextually appropriate actions aligned with the user’s intentions and needs. The works presented in this paper explore proactive decision-making mechanisms in multimodal interaction settings and seek to enhance robotic expressiveness through nonverbal communication cues. Current efforts focus on evaluating and comparing approaches such as agentic workflows and reinforcement learning within a unified framework, aiming to facilitate more consistent and contextually aware human–robot interaction.
%U https://aclanthology.org/2025.yrrsds-1.8/
%P 20-24
Markdown (Informal)
[Multimodal Agentic Dialogue Systems for Situated Human-Robot Interaction](https://aclanthology.org/2025.yrrsds-1.8/) (Sucal, YRRSDS 2025)
ACL