@inproceedings{bellver-etal-2026-orchestra,
title = "{ORCHESTRA}: {AI}-Driven Microservices Architecture to Create Personalized Experiences",
author = "Bellver, Jaime and
Ramos-Varela, Samuel and
Guragain, Anmol and
C{\'o}rdoba, Ricardo and
D{'}Haro, Luis Fernando",
editor = "Riccardi, Giuseppe and
Mousavi, Seyed Mahed and
Torres, Maria Ines and
Yoshino, Koichiro and
Callejas, Zoraida and
Chowdhury, Shammur Absar and
Chen, Yun-Nung and
Bechet, Frederic and
Gustafson, Joakim and
Damnati, G{\'e}raldine and
Papangelis, Alex and
D{'}Haro, Luis Fernando and
Mendon{\c{c}}a, John and
Bernardi, Raffaella and
Hakkani-Tur, Dilek and
Di Fabbrizio, Giuseppe {''}Pino{''} and
Kawahara, Tatsuya and
Alam, Firoj and
Tur, Gokhan and
Johnston, Michael",
booktitle = "Proceedings of the 16th International Workshop on Spoken Dialogue System Technology",
month = feb,
year = "2026",
address = "Trento, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2026.iwsds-1.18/",
pages = "158--167",
abstract = "Industry stakeholders are willing to incorporate {AI} systems in their pipelines, therefore they want agentic flexibility without losing the guaranties and auditability of fixed pipelines. This paper describes {ORCHESTRA}, a portable and extensible microservice architecture for orchestrating customizable multimodal {AI} workflows across domains. It embeds Large Language Model ({LLM}) agents within a deterministic control flow, combining reliability with adaptive reasoning. A Dockerized Manager routes text, speech, and image requests through specialist workers for {ASR}, emotion analysis, retrieval, guardrails, and {TTS}, ensuring that multimodal processing, safety checks, logging, and memory updates are consistently executed, while scoped agent nodes adjust prompts and retrieval strategies dynamically. The system scales via container replication and exposes per-step observability through open-source dashboards. We ground the discussion in a concrete deployment: an interactive museum guide that handles speech and image queries, personalizes narratives with emotion cues, invokes tools, and enforces policy-compliant responses. From this application, we report actionable guidance: interface contracts for services, where to place pre/post safety passes, how to structure memory for {RAG}, and common failure modes with mitigations. We position the approach against fully agentic and pure pipeline baselines, outline trade-offs (determinism vs. flexibility, latency budget), and sketch near-term extensions such as sharded managers, adaptive sub-flows, and streaming inference. Our goal is to provide a reusable blueprint for safely deploying agent-enhanced, multimodal assistants in production, illustrated through the museums use case."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bellver-etal-2026-orchestra">
<titleInfo>
<title>ORCHESTRA: AI-Driven Microservices Architecture to Create Personalized Experiences</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jaime</namePart>
<namePart type="family">Bellver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Ramos-Varela</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anmol</namePart>
<namePart type="family">Guragain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ricardo</namePart>
<namePart type="family">Córdoba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="given">Fernando</namePart>
<namePart type="family">D’Haro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2026-02</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Workshop on Spoken Dialogue System Technology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Riccardi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seyed</namePart>
<namePart type="given">Mahed</namePart>
<namePart type="family">Mousavi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Ines</namePart>
<namePart type="family">Torres</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichiro</namePart>
<namePart type="family">Yoshino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zoraida</namePart>
<namePart type="family">Callejas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shammur</namePart>
<namePart type="given">Absar</namePart>
<namePart type="family">Chowdhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederic</namePart>
<namePart type="family">Bechet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joakim</namePart>
<namePart type="family">Gustafson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Géraldine</namePart>
<namePart type="family">Damnati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="given">Fernando</namePart>
<namePart type="family">D’Haro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Mendonça</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raffaella</namePart>
<namePart type="family">Bernardi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="given">”Pino”</namePart>
<namePart type="family">Di Fabbrizio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsuya</namePart>
<namePart type="family">Kawahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Firoj</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gokhan</namePart>
<namePart type="family">Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Johnston</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Trento, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Industry stakeholders are willing to incorporate AI systems in their pipelines, therefore they want agentic flexibility without losing the guaranties and auditability of fixed pipelines. This paper describes ORCHESTRA, a portable and extensible microservice architecture for orchestrating customizable multimodal AI workflows across domains. It embeds Large Language Model (LLM) agents within a deterministic control flow, combining reliability with adaptive reasoning. A Dockerized Manager routes text, speech, and image requests through specialist workers for ASR, emotion analysis, retrieval, guardrails, and TTS, ensuring that multimodal processing, safety checks, logging, and memory updates are consistently executed, while scoped agent nodes adjust prompts and retrieval strategies dynamically. The system scales via container replication and exposes per-step observability through open-source dashboards. We ground the discussion in a concrete deployment: an interactive museum guide that handles speech and image queries, personalizes narratives with emotion cues, invokes tools, and enforces policy-compliant responses. From this application, we report actionable guidance: interface contracts for services, where to place pre/post safety passes, how to structure memory for RAG, and common failure modes with mitigations. We position the approach against fully agentic and pure pipeline baselines, outline trade-offs (determinism vs. flexibility, latency budget), and sketch near-term extensions such as sharded managers, adaptive sub-flows, and streaming inference. Our goal is to provide a reusable blueprint for safely deploying agent-enhanced, multimodal assistants in production, illustrated through the museums use case.</abstract>
<identifier type="citekey">bellver-etal-2026-orchestra</identifier>
<location>
<url>https://aclanthology.org/2026.iwsds-1.18/</url>
</location>
<part>
<date>2026-02</date>
<extent unit="page">
<start>158</start>
<end>167</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ORCHESTRA: AI-Driven Microservices Architecture to Create Personalized Experiences
%A Bellver, Jaime
%A Ramos-Varela, Samuel
%A Guragain, Anmol
%A Córdoba, Ricardo
%A D’Haro, Luis Fernando
%Y Riccardi, Giuseppe
%Y Mousavi, Seyed Mahed
%Y Torres, Maria Ines
%Y Yoshino, Koichiro
%Y Callejas, Zoraida
%Y Chowdhury, Shammur Absar
%Y Chen, Yun-Nung
%Y Bechet, Frederic
%Y Gustafson, Joakim
%Y Damnati, Géraldine
%Y Papangelis, Alex
%Y D’Haro, Luis Fernando
%Y Mendonça, John
%Y Bernardi, Raffaella
%Y Hakkani-Tur, Dilek
%Y Di Fabbrizio, Giuseppe ”Pino”
%Y Kawahara, Tatsuya
%Y Alam, Firoj
%Y Tur, Gokhan
%Y Johnston, Michael
%S Proceedings of the 16th International Workshop on Spoken Dialogue System Technology
%D 2026
%8 February
%I Association for Computational Linguistics
%C Trento, Italy
%F bellver-etal-2026-orchestra
%X Industry stakeholders are willing to incorporate AI systems in their pipelines, therefore they want agentic flexibility without losing the guaranties and auditability of fixed pipelines. This paper describes ORCHESTRA, a portable and extensible microservice architecture for orchestrating customizable multimodal AI workflows across domains. It embeds Large Language Model (LLM) agents within a deterministic control flow, combining reliability with adaptive reasoning. A Dockerized Manager routes text, speech, and image requests through specialist workers for ASR, emotion analysis, retrieval, guardrails, and TTS, ensuring that multimodal processing, safety checks, logging, and memory updates are consistently executed, while scoped agent nodes adjust prompts and retrieval strategies dynamically. The system scales via container replication and exposes per-step observability through open-source dashboards. We ground the discussion in a concrete deployment: an interactive museum guide that handles speech and image queries, personalizes narratives with emotion cues, invokes tools, and enforces policy-compliant responses. From this application, we report actionable guidance: interface contracts for services, where to place pre/post safety passes, how to structure memory for RAG, and common failure modes with mitigations. We position the approach against fully agentic and pure pipeline baselines, outline trade-offs (determinism vs. flexibility, latency budget), and sketch near-term extensions such as sharded managers, adaptive sub-flows, and streaming inference. Our goal is to provide a reusable blueprint for safely deploying agent-enhanced, multimodal assistants in production, illustrated through the museums use case.
%U https://aclanthology.org/2026.iwsds-1.18/
%P 158-167
Markdown (Informal)
[ORCHESTRA: AI-Driven Microservices Architecture to Create Personalized Experiences](https://aclanthology.org/2026.iwsds-1.18/) (Bellver et al., IWSDS 2026)
ACL