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A b s t r a c t  

The eventual goal of a language model is to accu- 
rately predict the value of a missing word given its 
context. We present an approach to word prediction 
that is based on learning a representation for each 
word as a function of words and linguistics pred- 
icates in its context. This approach raises a few 
new questions that we address. First, in order to 
learn good word representations it is necessary to 
use an expressive representation of the context. We 
present a way that uses external knowledge to gener- 
ate expressive context representations, along with a 
learning method capable of handling the large num- 
ber of features generated this way that can, poten- 
tially, contribute to each prediction. Second, since 
the number of words "competing" for each predic- 
tion is large, there is a need to "focus the attention" 
on a smaller subset of these. We exhibit the contri- 
bution of a "focus of attention" mechanism to the 
performance of the word predictor. Finally, we de- 
scribe a large scale experimental study in which the 
approach presented is shown to yield significant im- 
provements in word prediction tasks. 

1 I n t r o d u c t i o n  
The task of predicting the most likely word based on 
properties of its surrounding context is the archetyp- 
ical prediction problem in natural language process- 
ing (NLP). In many NLP tasks it is necessary to de- 
termine the most likely word, part-of-speech (POS) 
tag or any other token, given its history or context. 
Examples include part-of speech tagging, word-sense 
disambiguation, speech recognition, accent restora- 
tion, word choice selection in machine translation, 
context-sensitive spelling correction and identifying 
discourse markers. Most approaches to these prob- 
lems are based on n-gram-like modeling. Namely, 
the learning methods make use of features which are 
conjunctions of typically (up to) three consecutive 
words or POS tags in order to derive the predictor. 

In this paper we show that incorporating addi- 
tional information into the learning process is very 

* This research is supported by NSF grants IIS-9801638 and 
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beneficial. In particular, we provide the learner with 
a rich set of features that combine the information 
available in the local context along with shallow 
parsing information. At the same time, we study 
a learning approach that is specifically tailored for 
problems in which the potential number of features 
is very large but only a fairly small number of them 
actually participates in the decision. Word predic- 
tion experiments that we perform show significant 
improvements in error rate relative to the use of the 
traditional, restricted, set of features. 

Background  
The most influential problem in motivating statis- 
tical learning application in NLP tasks is that of 
word selection in speech recognition (Jelinek, 1998). 
There, word classifiers are derived from a probabilis- 
tic language model which estimates the probability 
of a sentence s using Bayes rule as the product of 
conditional probabilities, 

Pr(s) - = 
-- H ~ = l P r ( w i ] w l , . . . W i _ l  ) 
-- H?=lPr(wi[hi  ) 

where hi is the relevant history when predicting wi. 
Thus, in order to predict the most likely word in a 
given context, a global estimation of the sentence 
probability is derived which, in turn, is computed 
by estimating the probability of each word given its 
local context or history. Estimating terms of the 
form P r ( w l h  ) is done by assuming some generative 
probabilistic model, typically using Markov or other 
independence assumptions, which gives rise to es- 
timating conditional probabilities of n-grams type 
features (in the word or POS space). Machine learn- 
ing based classifiers and maximum entropy models 
which, in principle, are not restricted to features of 
these forms have used them nevertheless, perhaps 
under the influence of probabilistic methods (Brill, 
1995; Yarowsky, 1994; Ratnaparkhi et al., 1994). 

It has been argued that the information available 
in the local context of each word should be aug- 
mented by global sentence information and even in- 
formation external to the sentence in order to learn 
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bet ter  classifiers and language models. Efforts in 
this directions consists of (1) directly adding syn- 
tactic information, as in (Chelba and Jelinek, 1998; 
Rosenfeld, 1996), and (2) indirectly adding syntac- 
tic and semantic information, via similarity models; 
in this case n-gram type features are used when- 
ever possible, and when they cannot be used (due 
to data  sparsity), additional information compiled 
into a similarity measure is used (Dagan et al., 
1999). Nevertheless, the efforts in this direction so 
far have shown very insignificant improvements, if 
any (Chelba and Jelinek, 1998; Rosenfeld, 1996). 
We believe that  the main reason for that  is that  in- 
corporating information sources in NLP needs to be 
coupled with a learning approach that  is suitable for 
it. 

Studies have shown that  both machine learning 
and probabilistic learning methods used in NLP 
make decisions using a linear decision surface over 
the feature space (Roth, 1998; Roth, 1999). In this 
view, the feature space consists of simple functions 
(e.g., n-grams) over the the original data  so as to 
allow for expressive enough representations using a 
simple functional form (e.g., a linear function). This 
implies that  the number of potential features that  
the learning stage needs to consider may be very 
large, and may grow rapidly when increasing the ex- 
pressivity of the features. Therefore a feasible com- 
putational approach needs to be feature-efficient. It  
needs to tolerate a large number of potential features 
in the sense that  the number of examples required 
for it to converge should depend mostly on the num- 
ber features relevant to the decision, rather  than on 
the number of potential features. 

This paper addresses the two issues mentioned 
above. It presents a rich set of features that  is con- 
structed using information readily available in the 
sentence along with shallow parsing and dependency 
information. It then presents a learning approach 
that  can use this expressive (and potentially large) 
intermediate representation and shows that  it yields 
a significant improvement in word error rate for the 
task of word prediction. 

The rest of the paper is organized as follows. In 
section 2 we formalize the problem, discuss the in- 
formation sources available to the learning system 
and how we use those to construct features. In sec- 
tion 3 we present the learning approach, based on 
the SNoW learning architecture. Section 4 presents 
our experimental study and results. In section 4.4 
we discuss the issue of deciding on a set of candi- 
date words for each decision. Section 5 concludes 
and discusses future work. 

2 I n f o r m a t i o n  S o u r c e s  a n d  F e a t u r e s  

Our goal is to learn a representation for each word 
in terms of features which characterize the syntactic 

and semantic context in which the word tends to 
appear. Our features are defined as simple relations 
over a collection of predicates that  capture (some of) 
the information available in a sentence. 

2.1 I n f o r m a t i o n  S o u r c e s  

D e f i n i t i o n  1 Let s = <  wl ,w2 , . . . ,wn  > be a sen- 
tence in which wi is the i-th word. Let :£ be a col- 
lection of predicates over a sentence s. IS(s)) 1, the 
I n f o r m a t i o n  source ( s )  available for the sentence 
s is a representation ors as a list of predicates I E :r, 

XS(S) = {I I (Wll  , . . .Wl,) ,- . . ,  /~g(W~l , ..-Wk,)}. 

Ji is the arity of the predicate I j .  

E x a m p l e  2 Let s be the sentence 
< John, X, a t ,  the ,  c lock ,  to ,  see,  what, t ime, i t ,  i s  > 
Let ~={word, pos, subj-verb}, with the interpreta- 
tion that word is a unary predicate that returns the 
value of the word in its domain; pos is a unary 
predicate that returns the value of the pos of the 
word in its domain, in the context of the sentence; 
s u b j -  verb is a binary predicate that returns the 
value of the two words in its domain if the second is 
a verb in the sentence and the first is its subject; it 
returns ¢ otherwise. Then, 

IS ( s )  = {word(wl)  = John, ..., word(w3) = at , . . . ,  

word(wn)  = i s ,  pos(w4) = DET, . . . ,  

s bj - verb(w , w2) = {John, x}. . .} .  

The IS representation of s consists only of the pred- 
icates with non-empty values. E.g., pos(w6) = 
modal is not part  of the IS for the sentence above. 
subj - verb might not exist at all in the IS even if the 
predicate is available, e.g., in The b a l l  was g iven  
to  Mary. 

Clearly the I S  representation of s does not contain 
all the information available to a human reading s; 
it captures, however, all the input that  is available 
to the computational process discussed in the rest 
of this paper. The predicates could be generated by 
any external mechanism, even a learned one. This 
issue is orthogonal to the current discussion. 

2 . 2  G e n e r a t i n g  F e a t u r e s  

Our goal is to learn a representation for each word 
of interest. Most efficient learning methods known 
today and, in particular, those used in NLP, make 
use of a linear decision surface over their feature 
space (Roth, 1998; Roth, 1999). Therefore, in or- 
der to learn expressive representations one needs to 
compose complex features as a function of the in- 
formation sources available. A linear function ex- 
pressed directly in terms of those will not be expres- 
sive enough. We now define a language that  allows 

1We denote IS(s) as IS wherever it is obvious what the 
referred sentence  we is, or whenever  we want  to  indicate In- 
formation Source in general. 
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one to define "types" of features 2 in terms of the 
information sources available to it. 

De f in i t i on  3 (Bas ic  F e a t u r e s )  Let I E Z be a 
k-ary predicate with range R.  Denote w k = 
(Wj l , . . .  , wjk). We define two basic binary relations 
as follows. For a e R we define: 

1 iffI(w k)=a 
f ( I ( w k ) ,  a) = 0 otherwise (1) 

An existential version of the relation is defined by: 

l i f f 3 a E R s . t I ( w  k ) = a  
f ( I ( w k ) , x )  = 0 otherwise (2) 

Features, which are defined as binary relations, can 
be composed to yield more complex relations in 
terms of the original predicates available in IS. 

D e f i n i t i o n  4 ( C o m p o s i n g  f e a t u r e s )  Let f l ,  f2 
be feature definitions. Then fand(f l ,  f2 )  for(f1, f2 )  
fnot( f l )  are defined and given the usual semantic: 

liff:----h=l 
fand(fl ,  f2) = 0 otherwise 

l i f f : = l  o r f 2 = l  
fob(f1, f2 )  = 0 otherwise 

{ l ~ f f l = O  
fnot(fx) = 0 otherwise 

In order to learn with features generated using these 
definitions as input, it is important  that  features 
generated when applying the definitions on different 
ISs are given the same identification. In this pre- 
sentation we assume tha t  the composition operator 
along with the appropriate IS element (e.g., Ex. 2, 
Ex. 9) are written explicitly as the identification of 
the features. Some of the subtleties in defining the 
output  representation are addressed in (Cumby and 
Roth, 2000). 

2.3 S t r u c t u r e d  F e a t u r e s  

So far we have presented features as relations over 
IS ( s )  and allowed for Boolean composition opera- 
tors. In most cases more information than just a list 
of active predicates is available. We abstract this 
using the notion of a structural information source 
(S IS ( s ) )  defined below. This allows richer class of 
feature types to be defined. 

2We note tha t  we do not define the  features will be used in 
the learning process. These are going to be defined in a data  
driven way given the definitions discussed here and the input 
ISs. The importance of formally defining the  "types" is due 
to the  fact tha t  some of these are quantified. Evaluating them 
on a given sentence might be computat ionally intractable and 
a formal definition would help to flesh out the difficulties and 
aid in designing the language (Cumby and Roth, 2000). 

2.4 S t r u c t u r e d  I n s t a n c e s  

D e f i n i t i o n  5 ( S t r u c t u r a l  I n f o r m a t i o n  S o u r c e )  
Let s =< wl ,w2,  ...,Wn >. SIS(s)),  the S t r u c t u r a l  
I n f o r m a t i o n  so u rce ( s )  available for the sentence 
s, is a tuple (s, E 1 , . . .  ,Ek)  of directed acyclic 
graphs with s as the set of vertices and Ei 's, a set 
of edges in s. 

E x a m p l e  6 ( L i n e a r  S t r u c t u r e )  The simplest 
SIS is the one corresponding to the linear structure 
of the sentence. That is, S I S ( s )  = ( s ,E )  where 
(wi, wj)  E E iff the word wi occurs immediately 
before wj in the sentence (Figure 1 bottom left 
part). 

In a linear structure (s =< Wl,W2,.. . ,Wn > , E ) ,  
where E = {(wi ,wi+l) ; i  = 1, . . . n -  1}, we define 
the chain 

c ( w j ,  [l, r]) = { w , _ , , . . . ,  w j , . . ,  n s. 

We can now define a new set of features that  
makes use of the structural information. Structural  
features are defined using the SIS. When defining a 
feature, the naming of nodes in s is done relative to 
a distinguished node, denoted wp, which we call the 
focus word of the feature. Regardless of the arity 
of the features we sometimes denote the feature f 
defined with respect to wp as f (wp) .  

D e f i n i t i o n  7 ( P r o x i m i t y )  Let S I S ( s )  = (s, E)  be 
the linear structure and let I E Z be a k-ary predicate 
with range R.  Let Wp be a focus word and C = 
C(wp, [l, r]) the chain around it. Then, the proximity 
features for I with respect to the chain C are defined 
as: 

fc(l(w), a) = { 
1 i f I ( w )  = a , a  E R , w  E C 
0 otherwise 

(3) 

The second type of feature composition defined 
using the structure is a collocation operator.  

D e f i n i t i o n  8 ( C o l l o c a t i o n )  Let f l , . . . f k  be fea- 
ture definitions, col locc ( f l , f 2, . . . f k ) is a restricted 
conjunctive operator that is evaluated on a chain 
C of length k in a graph. Specifically, let C = 
{wj, ,  wj=, .. . , wjk } be a chain of length k in S I S ( s ) .  
Then, the collocation feature for f l , . . ,  fk with re- 
spect to the chain C is defined as 

collocc(f l ,  . . . , fk) = { 
1 i fVi  = 1 , . . . k ,  f i (wj , )  = 1 
0 otherwise 

(4) 

The following example defines features that  are 
used in the experiments described in Sec. 4. 
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E x a m p l e  9 Let s be the sentence in Example 2. We 
define some of the features with respect to the linear 
structure of the sentence. The word X is used as 
the focus word and a chain [-10, 10] is defined with 
respect to it. The proximity features are defined with 
respect to the predicate word. We get, for example: 
fc(word) ---- John; fc(word) = at; fc(word) = clock. 

Collocation features are defined with respect to a 
chain [ -2 ,  2] centered at the focus word X .  They are 
defined with respect to two basic features f l ,  f2 each 
of which can be either f(word,  a) or f(pos, a). The 
resulting features include, for example: 

collocc(word, w o r d ) =  { J o h n -  X}; 

collocc(word, word) = { X  - at}; 

collocc(word, pos) = { a t -  D E T } .  

2.5 N o n - L i n e a r  S t r u c t u r e  

So far we have described feature definitions which 
make use of the linear structure of the sentence and 
yield features which are not too different from stan- 
dard features used in the literature e.g., n-grams 
with respect to pos or word can be defined as colloc 
for the appropriate chain. Consider now that  we are 
given a general directed acyclic graph G = (s, E)  
on the the sentence s as its nodes. Given a distin- 
guished focus word wp 6 s we can define a chain in 
the graph as we did above for the linear structure 
of the sentence. Since the definitions given above, 
Def. 7 and Def. 8, were given for chains they would 
apply for any chain in any graph. This generaliza- 
tion becomes interesting if we are given a graph that  
represents a more involved structure of the sentence. 

Consider, for example the graph DG(s) in Fig- 
ure 1. DG(s) described the dependency graph of 
the sentence s. An edge (wi,wj) in DG(s) repre- 
sent a dependency between the two words. In our 
feature generation language we separate the infor- 
mation provided by the dependency grammar 3 to 
two parts. The structural information, provided in 
the left side of Figure 1, is used to generate SIS(s ) .  
The labels on the edges are used as predicates and 
are part  of IS(s) .  Notice that  some authors (Yuret, 
1998; Berger and Printz, 1998) have used the struc- 
tural information, but have not used the information 
given by the labels on the edges as we do. 

The following example defines features that  are 
used in the experiments described in Sec. 4. 

E x a m p l e  10 Let s be the sentence in Figure 1 
along with its IS that is defined using the predicates 
word, pos ,  sub j ,  ob j ,  aux_vrb. A sub j - v e r b  

3This information can be produced by a functional de- 
pendency grammar (FDG), which assigns each word a spe- 
cific funct ion,  and  then  s t ruc tu re s  the  sentence h ie ra rch ica l ly  
based on it, as we do here (Tapana inen  and  J rv inen ,  1997), 
bu t  can also be gene ra t ed  by an  ex te rna l  ru le-based parse r  or 
a learned  one. 

feature, fsubj-verb, can be defined as a collocation 
over chains constructed with respect to the focus 
word j o i n .  Moreover, we can define fsubj-verb to 
be active also when there is an aux_vrb between 
the subj  and verb ,  by defining it as a disjunction 
of two collocation features, the sub j - v e r b  and the 
sub j - aux_vrb -ve rb .  Other features that we use are 
conjunctions of words that occur before the focus 
verb (here: j o i n )  along all the chains it occurs in 
(here: w i l l ,  boa rd ,  as)  and collocations of obj 
and verb.  

As a final comment on feature generation, we note 
that  the language presented is used to define "types" 
of features. These are instantiated in a data driven 
way given input sentences. A large number of fea- 
tures is created in this way, most of which might not 
be relevant to the decision at hand; thus, this pro- 
cess needs to be followed by a learning process that  
can learn in the presence of these many features. 

3 T h e  L e a r n i n g  A p p r o a c h  

Our experimental investigation is done using the 
SNo W learning system (Roth, 1998). Earlier ver- 
sions of S N o W  (Roth, 1998; Golding and Roth, 
1999; Roth and Zelenko, 1998; Munoz et al., 1999) 
have been applied successfully to several natural lan- 
guage related tasks. Here we use SNo W for the task 
of word prediction; a representation is learned for 
each word of interest, and these compete at evalua- 
tion time to determine the prediction. 

3.1 T h e  S N O W  A r c h i t e c t u r e  

The SNo W architecture is a sparse network of linear 
units over a common pre-defined or incrementally 
learned feature space. It  is specifically tailored for 
learning in domains in which the potential number of 
features might be very large but  only a small subset 
of them is actually relevant to the decision made. 

Nodes in the input layer of the network represent 
simple relations on the input sentence and are being 
used as the input features. Target nodes represent 
words that  are of interest; in the case studied here, 
each of the word candidates for prediction is repre- 
sented as a target node. An input sentence, along 
with a designated word of interest in it, is mapped 
into a set of features which are active in it; this rep- 
resentation is presented to the input layer of SNoW 
and propagates to the target nodes. Target nodes 
are linked via weighted edges to (some of) the input 
features. Let At = { Q , . . .  , i,~} be the set of features 
that  are active in an example and are linked to the 
target node t. Then the linear unit corresponding to 
t is active iff 

t 
E w i > Ot, 
iEAt 

where w~ is the weight on the edge connecting the ith 
feature to the target  node t, and Ot is the threshold 
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Pierre Vinken, 61 years old, will join the board as a 
nonexecutive director Nov. 29. 

Figure 1: A s e n t e n c e  w i t h  a l inear and  a d e p e n d e n c y  g r a m m a r  s t r u c t u r e  

for the target node t. In this way, SNo W provides 
a collection of word representations rather than just 
discriminators. 

A given example is t reated autonomously by each 
target subnetwork; an example labeled t may be 
t reated as a positive example by the subnetwork 
for t and as a negative example by the rest of the 
target  nodes. The learning policy is on-line and 
mistake-driven; several update  rules can be used 
within SNOW. The most successful update rule is 
a variant of Littlestone's Winnow update  rule (Lit- 
tlestone, 1988), a multiplicative update  rule that  is 
tailored to the situation in which the set of input 
features is not known a priori, as in the infinite 
at tr ibute model (Blum, 1992). This mechanism is 
implemented via the sparse architecture of SNOW. 
Tha t  is, (1) input features are allocated in a data  
driven way - an input node for the feature i is al- 
located only if the feature i was active in any input 
sentence and (2) a link (i.e., a non-zero weight) ex- 
ists between a target node t and a feature i if and 
only if i was active in an example labeled t. 

One of the important  properties of the sparse ar- 
chitecture is that  the complexity of processing an 
example depends only on the number of features ac- 
tive in it, na, and is independent of the total  num- 
ber of features, nt, observed over the life time of the 
system. This is important  in domains in which the 
total  number of features is very large, but  only a 
small number of them is active in each example. 

4 E x p e r i m e n t a l  S t u d y  

4.1 T a s k  de f in i t ion  

The experiments were conducted with four goals in 
mind: 

1. To compare mistake driven algorithms with 
naive Bayes, tr igram with backoff and a simple 
maximum likelihood estimation (MLE) base- 
line. 

2. To create a set of experiments which is compa- 
rable with similar experiments that  were previ- 
ously conducted by other researchers. 

3. To build a baseline for two types of extensions of 
the simple use of linear features: (i) Non-Linear 
features (ii) Automatic focus of attention. 

4. To evaluate word prediction as a simple lan- 
guage model. 

We chose the verb prediction task which is sim- 
ilar to other word prediction tasks (e.g.,(Golding 
and Roth, 1999)) and, in particular, follows the 
paradigm in (Lee and Pereira, 1999; Dagan et al., 
1999; Lee, 1999). There, a list of the confusion sets is 
constructed first, each consists of two different verbs. 
The verb vl is coupled with v2 provided that  they 
occur equally likely in the corpus. In the test set, 
every occurrence of vl or v2 was replaced by a set 
{vl, v2} and the classification task was to predict the 
correct verb. For example, if a confusion set is cre- 
ated for the verbs "make" and "sell", then the data  
is altered as follows: 

Once target subnetworks have been learned and 
the network is being evaluated, a decision sup- 
port  mechanism is employed, which selects the 
dominant active target node in the SNoW unit 
via a winner-take-all mechanism to produce a fi- 
nal prediction. SNoW is available publicly at 
http ://L2R. cs. uiuc. edu/- cogcomp, html. 

make the paper --+ {make,sell} the paper 

sell sensitive data  --~ {make,sell} sensitive data  

The evaluated predictor chooses which of the two 
verbs is more likely to occur in the current sentence. 

In choosing the prediction task in this way, we 
make sure the task in difficult by choosing between 
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competing words that  have the same prior proba- 
bilities and have the same part  of speech. A fur- 
ther advantage of this paradigm is that  in future 
experiments we may choose the candidate verbs so 
that  they have the same sub-categorization, pho- 
netic transcription, etc. in order to imitate the first 
phase of language modeling used in creating can- 
didates for the prediction task. Moreover, the pre- 
transformed data provides the correct answer so that  
(i) it is easy to generate training data; no supervi- 
sion is required, and (ii) it is easy to evaluate the 
results assuming that  the most appropriate word is 
provided in the original text.  

Results are evaluated using word-error rate 
(WER). Namely, every time we predict the wrong 
word it is counted as a mistake. 

4.2 Data 
We used the Wall Street Journal (WSJ) of the years 
88-89. The size of our corpus is about 1,000,000 
words. The corpus was divided into 80% training 
and 20% test. The training and the test data  were 
processed by the FDG parser (Tapanainen and Jrvi- 
nen, 1997). Only verbs that  occur at least 50 times 
in the corpus were chosen. This resulted in 278 verbs 
that  we split into 139 confusion sets as above. Af- 
ter  filtering the examples of verbs which were not in 
any of the sets we use 73, 184 training examples and 
19,852 test examples. 

4.3 Results  
4.3.1 Features 
In order to test the advantages of different feature 
sets we conducted experiments using the following 
features sets: 

1. Linear features: proximity of window size 4-10 
words, conjunction of size 2 using window size 
4-2. The conjunction combines words and parts 
of speech. 

2. Linear + Non linear features: using the lin- 
ear features defined in (1) along with non 
linear features that  use the predicates sub j ,  
ob j ,  word, pos, the collocations s u b j - v e r b ,  
ve r b - ob j  linked to the focus verb via the graph 
structure and conjunction of 2 linked words. 

The over all number of features we have generated 
for all 278 target verbs was around 400,000. In all 
tables below the NB columns represent results of the 
naive Bayes algorithm as implemented within SNoW 
and the SNoW column represents the results of the 
sparse Winnow algorithm within SNOW. 

Table 1 summarizes the results of the experiments 
with the features sets (1), (2) above. The baseline 
experiment uses MLE, the majority predictor. In 
addition, we conducted the same experiment using 
trigram with backoff and the WER is 29.3%. From 

Linear 
Non Linear 

Bline N B  S N o W  
49.6 13.54 11.56 
49.6 12.25 9.84 

Table 1: Word Error Rate  results for linear 
and non-linear features 

these results we conclude that  using more expressive 
features helps significantly in reducing the WER. 
However, one can use those types of features only 
if the learning method handles large number of pos- 
sible features. This emphasizes the importance of 
the new learning method. 

Similarity N B  S N o W  
54.6% 59.1% W S J  data 

A P  n ew s  47.6% 

Table 2: C o m p a r i s o n  o f  the improvement 
achieved using similarity methods  (Dagan et 
al., 1999) and using the methods  presented in 
this paper. Results  are shown in percentage 
of  improvement  in accuracy over the baseline. 

Table 2 compares our method to methods that  use 
similarity measures (Dagan et al., 1999; Lee, 1999). 
Since we could not use the same corpus as in those 
experiments, we compare the ratio of improvement 
and not the WER. The baseline in this studies is 
different, but other than that  the experiments are 
identical. We show an improvement over the best 
similarity method. Furthermore, we train using only 
73,184 examples while (Dagan et al., 1999) train 
using 587, 833 examples. Given our experience with 
our approach on other data  sets we conjecture that  
we could have improved the results further had we 
used that  many training examples. 

4.4 F o cu s  o f  attent ion 
SNoW is used in our experiments as a multi-class 
predictor - a representation is learned for each word 
in a given set and, at evaluation time, one of these 
is selected as the prediction. The set of candidate 
words is called the confusion set (Golding and Roth, 
1999). Let C be the set of all target words. In previ- 
ous experiments we generated artificially subsets of 
size 2 of C in order to evaluate the performance of 
our methods. In general, however, the question of 
determining a good set of candidates is interesting in 
it own right. In the absence, of a good method, one 
might end up choosing a verb from among a larger 
set of candidates. We would like to s tudy the effects 
this issue has on the performance of our method. 

In principle, instead of working with a single large 
confusion set C, it might be possible to,split C into 
subsets of smaller size. This process, which we call 
the focus of attention (FOA) would be beneficial 
only if we can guarantee that ,  with high probability, 
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given a prediction task, we know which confusion 
set to use, so that the true target belongs to it. In 
fact, the FOA problem can be discussed separately 
for the training and test stages. 

1. Training: Given our training policy (Sec. 3) ev- 
ery positive example serves as a negative exam- 
ple to all other targets in its confusion set. For 
a large set C training might become computa- 
tionally infeasible. 

2. Testing: considering only a small set of words 
as candidates at evaluation time increases the 
baseline and might be significant from the point 
of view of accuracy and efficiency. 

To evaluate the advantage of reducing the size of 
the confusion set in the training and test phases, we 
conducted the following experiments using the same 
features set (linear features as in Table 1). 

Bline N B  S N o W  
T r a i n  All Tes t  All 87.44 65.22 65.05 
Tra in  All Tes t  2 49.6 13.54 13.15 
Tra in  2 Test  2 49.6 13.54 11.55 

Table 3: Eva lua t ing  Focus o f  A t t en t i on :  W o r d  
E r r o r  R a t e  for Tra in ing  and  test ing using 
all t he  words  t o g e t h e r  aga ins t  using pairs  o f  
words.  

"Train All" means training on all 278 targets to- 
gether. "Test all" means that the confusion set is 
of size 278 and includes all the targets. The results 
shown in Table 3 suggest that, in terms of accuracy, 
the significant factor is the confusion set size in the 
test stage. The effect of the confusion set size on 
training is minimal (although it does affect training 
time). We note that for the naive Bayes algorithm 
the notion of negative examples does not exist, and 
therefore regardless of the size of confusion set in 
training, it learns exactly the same representations. 
Thus, in the NB column, the confusion set size in 
training makes no difference. 

The application in which a word predictor is used 
might give a partial solution to the FOA problem. 
For example, given a prediction task in the context 
of speech recognition the phonemes that constitute 
the word might be known and thus suggest a way 
to generate a small confusion set to be used when 
evaluating the predictors. 

Tables 4,5 present the results of using artificially 
simulated speech recognizer using a method of gen- 
eral phonetic classes. That is, instead of transcrib- 
ing a word by the phoneme, the word is transcribed 
by the phoneme classes(Jurafsky and Martin, 200). 
Specifically, these experiments deviate from the task 
definition given above. The confusion sets used are 
of different sizes and they consist of verbs with dif- 
ferent prior probabilities in the corpus. Two sets of 

experiments were conducted that use the phonetic 
transcription of the words to generate confusion sets. 

Bl ine  N B  S N o W  
Tra in  All Tes t  P C  19.84 11.6 12.3 
Tra in  P C  Test  P C  19.84 11.6 11.3 

Table 4: S imula t ing  Speech  Recognizer :  W o r d  
E r r o r  R a t e  for  Tra in ing  and testing wi th  
confus ion sets  d e t e r m i n e d  based on phone t i c  
classes (PC)  f rom a s imula ted  speech  recog-  
nizer.  

In the first experiment (Table 4), the transcription 
of each word is given by the broad phonetic groups 
to which the phonemes belong i.e., nasals, fricative, 
etc. 4. For example, the word "b_u_y" is transcribed 
using phonemes as "b_Y" and here we transcribe it 
as "P_VI" which stands for "Plosive_Vowell". This 
partition results in a partition of the set of verbs 
into several confusions sets. A few of these confusion 
sets consist of a single word and therefore have 100% 
baseline, which explains the high baseline. 

Bl ine NB S N o W  
Tra in  All Tes t  P C  45.63 26.36 27.54 
Tra in  P C  Test  P C  45.63 26.36 25.55 

Table 5: S imula t ing  Speech  Recognizer :  W o r d  
E r r o r  R a t e  for  Tra in ing  and testing wi th  
confusion sets  d e t e r m i n e d  based  on phone t i c  
classes (PC)  f rom a s imula ted  speech  recog- 
nizer.  In  this  case on ly  confusion sets that 
have less t h a n  98% basel ine a re  used,  which  
explains  t he  overal l  lower basel ine.  

Table 5 presents the results of a similar exper- 
iment in which only confusion sets with multiple 
words were used, resulting in a lower baseline. 

As before, Train All means that training is done 
with all 278 targets together while Train PC means 
that the PC confusion sets were used also in train- 
ing. We note that for the case of SNOW, used here 
with the sparse Winnow algorithm, that size of the 
confusion set in training has some, although small, 
effect. The reason is that when the training is done 
with all the target words, each target word repre- 
sentation with all the examples in which it does not 
occur are used as negative examples. When a smaller 
confusion set is used the negative examples are more 
likely to be "true" negative. 

5 C o n c l u s i o n  

This paper presents a new approach to word predic- 
tion tasks. For each word of interest, a word repre- 
sentation is learned as a function of a common, but 

4In this experiment,  the vowels phonemes were divided 
into two different groups to account for different sounds. 
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potentially very large set of expressive (relational) 
features. Given a prediction task (a sentence with 
a missing word) the word representations are evalu- 
ated on it and compete for the most likely word to 
complete the sentence. 

We have described a language that allows one to 
define expressive feature types and have exhibited 
experimentally the advantage of using those on word 
prediction task. We have argued that the success of 
this approach hinges on the combination of using a 
large set of expressive features along with a learning 
approach that can tolerate it and converges quickly 
despite the large dimensionality of the data. We 
believe that this approach would be useful for other 
disambiguation tasks in NLP. 

We have also presented a preliminary study of a 
reduction in the confusion set size and its effects 
on the prediction performance. In future work we 
intend to study ways that determine the appropriate 
confusion set in a way to makes use of the current 
task properties. 
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