
Corpus-Based Syntactic Error Detection Using Syntactic Patterns

Koldo Gojenola, Maite Oronoz
Informatika Fakultatea, 649 P. K., Euskal Herriko Unibertsitatea,

20080 Donostia (Euskal Herria)
jipgogak@si.ehu.es, jiboranm@si.ehu.es

Abstract

This paper presents a parsing system for the
detection of syntactic errors. It combines a
robust partial parser which obtains the main
sentence components and a finite-state
parser used for the description of syntactic
error patterns. The system has been tested on
a corpus of real texts, containing both
correct and incorrect sentences, with
promising results.

Introduction

The problem of syntactic error detection and
correction has been addressed since the early
years of natural language processing. Different
techniques have been proposed for the treatment
of the significant portion of errors (typographic,
phonetic, cognitive and grammatical) that result
m valid words (Weischedel and Sondheimer
1983; Heidorn et al. 1982). However, although
most currently used word-processors actually
provide a grammar checking module, little work
has been done on the evaluation of results.
There are several reasons for this:

• Incomplete coverage. Some of the best
parsers at the moment can analyze only a
subset of the sentences in real texts.
Compared to syntactic valid structures, the set
of syntactically incorrect sentences can be
considered almost infinite. When a sentence
cannot be parsed it is difficult to determine
whether it corresponds to a syntactic error or
to an uncovered syntactic construction. In the
literature, syntactic errors have been defined
mostly with respect to their corresponding
correct constructions. The use of unrestricted
corpora confronts us with the problem of
flagging a correct structure as erroneous
(false alarms). These facts widen the scope of
the problem, as not only incorrect structures
but also correct ones must be taken into
account.

On the other hand, robust parsing systems
(e.g., statistical ones) are often unable to
distinguish ungrammatical structures f rom
correct ones.

24

• The need for big corpora. Each kind of
syntactic error occurs with very low
frequency and, therefore, big corpora are
needed for testing. Even if such corpora were
available, the task of recognizing error
instances for evaluation is a hard task, as there
are no syntactically annotated treebanks with
error marks for the purposes of evaluation
and testing. Thus, to obtain naturally
occurring test data, hundreds of texts must be
automatically and manually examined and
marked.

The aim of the present work is to examine the
feasibility of corpus-based syntactic error
detection, with methods that are sensitive enough
to obtain high correction rates and
discriminating enough to maintain low false
alarm rates. The system will be applied to
Basque, an agglutinative language with relative
free order among sentence components. Its
recent standardization makes it necessary to
develop a syntactic checking tool.
The remainder of this paper is organized as
follows. After commenting on the literature on
syntactic error detection in section 2, section 3
presents a description of the linguistic resources
we have used. Section 4 describes the error types
we have treated, while section 5 gives the
evaluation results.

1 Background

Kukich (1992) surveys the state of the art in
syntactic error detection. She estimates that a
proportion of all the errors varying between
25% and over 50%, depending on the
application, are valid words. Atwell and Elliott
(1987) made a manual study concluding that
55% of them are local syntactic errors
(detectable by an examination of the local
syntactic context), 18% are due to global
syntactic errors (involving long-distance
syntactic dependencies, which need a full parse
of the sentence), and 27% are semantic errors.
Regarding their treatment, different approaches
have been proposed:

• The relaxation of syntactic constraints
(Douglas and Dale 1992). This grammar-
based method allows the analysis of sentences

[.....................

, Sentence I
I I

I Morphological
analysis and disambiguation

II

i

Chart-parser

, chart (automaton) I
J I

Finite-state parser

, No Error / Error Type(s) ,J
I |

Figure 1. Overview of the system.

that do not fulfill some of the constraints of
the language by identifying a rule that might
have been violated, determining whether its
relaxation might lead to a successful parse. Its
main disadvantage is the need of a full-
coverage grammar, a problem not solved at
the moment, except for restricted
environments (Menzel and SchrOder 1999).

• Error patterns (Kukich 1992; Golding and
Schabes 1996; Mangu and Brill 1997), in the
form of statistical information, hand-coded
rules or automatically learned ones.

• Charts have been used in grammar-based
systems as a source of information; they can
be resorted to if no complete analysis is
found, so as to detect a syntactic error
(Mellish 1989; Min-Wilson 1998).

2 L i n g u i s t i c r e s o u r c e s

We have used a parsing system (Aldezabal et al.

1999, 2000) divided in three main modules (see
figure 1):

• Morphological analysis and disambiguation.
A robust morphological analyzer (Alegria et
al. 1996) obtains for each word its
segmentation(s) into component morphemes.
After that, morphological disambiguation
(Ezeiza et al. 1998) is applied, reducing the
high word-level ambiguity from 2.65 to 1.19
interpretations.

• Unification-based chart-parsing. After
morphological analysis and disambiguation, a
PATR-II unification grammar is applied
bottom-up to each sentence, giving a chart as
a result. The grammar is partial but it gives a
complete coverage of the main sentence
elements, such as noun phrases, prepositional
phrases, sentential complements and simple
sentences. The result is a shallow parser
(Abney 1997) that can be used for
subsequent processing (see figure 2). In this
figure, dashed lines are used to indicate
lexical elements (lemmas and morphemes),
while plain lines define syntactic constituents.
Bold circles represent word-boundaries, and
plain ones delimit morpheme-boundaries.
The figure has been simplified, as each arc is
actually represented by its morphological and
syntactic information, in the form of a
sequence of feature-value pairs.

• Finite-state parsing. A tool is needed that will
allow the definition of complex linguistic
error patterns over the chart. For that reason,
we view the chart as an automaton to which
finite-state constraints can be applied
encoded in the form of automata and
transducers (we use the Xerox Finite State
Tool, XFST, (Karttunen et al. 1997)). Finite-
state rules provide a modular, declarative and
flexible workbench to deal with the resulting
chart. Among the finite-state operators used,
we apply composition, intersection and union
of regular expressions and relations.

PP (in the nice house at the mountain)

~modifier (at the mountain)
~ - . _ - - ~ S (I have seen (it))

~ PP (in the nice house) kk ~ e s e e n ~

mendi~o-~'O--k~O " 0 et ~e"~)~ ~" 0 "

Figure 2. State of the chart after the analysis ofMendiko etxepolitean ikusi dut nik ('I have seen (it)
in the nice house at the mountain') .

2 5

Durangon, 1999ko martxoaren 7an

In Durango, 1999, March the 7th

(Durango, (1 9 9 9 (March, (7,
inessive, genitive) genitive, inessive
sing) sing) sing)

Example 1. Format of a valid date expression.

The full system provides a robust basis,
necessary for any treatment based on corpora.
In the case of error detection, a solid base is
indispensable.

3 E r r o r d e t e c t i o n

As a test, we chose the case of date expressions
due to several reasons:

• It was relatively easy to obtain test data
compared to other kinds of errors. Although
the data must be obtained mostly manually,
date expressions contain several cues (month
names, year numbers) that help in the process
of finding semiautomatically test sentences.
In any case, manual marking is needed for all
the retrieved sentences.

• The context of application is wide, that is,
date expressions contain morphologically
and syntactically rich enough phenomena
where several types of errors can be found.
These can be viewed as representative of the

set of local syntactic errors so that the same
procedure can be used when dealing with
other kinds of errors. Example 1 shows one
of the formats of a date expression.

Basque being an agglutinative language, most of
the elements appearing in date expressions (year
numbers, months and days) must be inflected,
attaching to them the corresponding number
and case morphemes. Moreover, each different
date format requires that the elements involved
appear in fixed combinations. This is a common
source of errors, not detectable by a spelling-
checker, as each isolated word-form is correct.
For evaluation, we collected 267 essays written
by students (with a high proportion of errors)
and texts from newspapers and magazines,
totaling more than 500,000 words. From them
we chose 658 sentences, including correct dates,
incorrect dates, and also structures 'similar' to
dates (those sentences containing months and
years, which could be mistaken for a date), in
order to test false positives (see table 1). As a
result of the selection procedure, the proportion
of errors is higher than in normal texts. We
divided our data into two groups. One of them
was used for development, leaving the second
one for the final test. The proportion of correct
dates is higher in the case of test data with
respect to those in the development corpus, so
that the effect of false positives will be evaluated
with more accuracy.

Number of sentences

Correct dates
i

[Structures 's imilar' to dates

Incorrect dates
Incorrect dates with 1 error

D e v e l o p m e n t

411

corpus

247

65 39
255 171

91 37

T e s t corpus

43 % 47 6 % 16
Incorrect dates with 2 errors 42 % 46 27 % 73
Incorrect dates with 3 errors 6 % 7 4 % 11

Table 1. Test data.
i

Error t~,pe

1. The year number cannot be inflected using a hyphen
2. The month lmartxoak) must appear in lowercase
3. The optional locative preceding dates (Frantzia)

must be followed by a comma
4. The day number after a month in genitive case

(martxoaren) must have a case mark
5. The day number after a month in absolutive case

(ekainak) cannot have a case mark
6. The month (martxoan) must be inflected in genitive

or absolutive case

E x a m p l e
I

Donostian, 1995-eko martxoaren 14an
1997ko martxoak 14

Frantzia 1997ko irailaren 8an

Donostian, 19995eko martxoaren 22

1998.eko ekainak 14ean argitaratua

Donostian, 1995.eko martxoan 28an

Combination of errors I2, 3 and 4) karrera bukatu nuenean 1997ko Ekainaren 30an
Table 2. Most frequent error types in dates.

2 6

define NP_Mon th_Absolu t ive or_Ergat ive

define PP Year_Genitive

define Error_Type 5

define Mark_Error Type__5

NP_Month_Abs olut ive_or_Ergat ive Inflected_Number;

[Error__Type_5] @-> BEGINERRORTYPE5 "... " ENDERRORTYPE5

I I Optional_place_Name Optional_Cor~na PP_Year_Genit ive _

Example 2. Regular expressions for an error pattern.

After examining different instances of errors, we
chose the six most frequent error types (see table
2). In a first phase, one or more patterns were
defined for each error type. However, we soon
realized that this approach failed because quite
often two or three errors might appear in the
same expression. This phenomenon asked for a
kind of 'gradual relaxation' approach, which
had to consider that several mistakes could co-
occur. Instead of treating each error
independently, we had to design error patterns
bearing in mind not only the correct expression,
but its erroneous versions as well. For example,
the last sentence in table 2 contains three
different errors, so that the error pattern for the
second error should consider the possibility of
also containing errors 3 and 4. This relaxation
on what could be considered a correct date had
the risk of increasing the number of false
positives. As the number of interactions among
errors grows exponentially with the number o f
errors (there are potentially 2 6 combinations of
the six error types), we based our error patterns
on the combinations actually found in the
corpus, so that in practice that number can be
considerably reduced (we did not find any
expression containing more than three errors in
the corpus).
The error pattern for the fifth kind of error (see
example 21) is defined in two steps. First, the
syntactic pattern of the error is defined (an NP
consisting of a month in ergative or absolutive
case followed by an inflected number), and
named Error_Type5. Second, a transducer
(Mark_Error_Type_5) is defined which
surrounds the incorrect pattem (represented by

Number of sentences
Undetected date errors
Detected date errors
False alarms

"... ") by two error tags (BEGINERRORTYPE5
and ENDERRORTYPE5). To further restrict the
application of the rule, left and right contexts for
the error can be defined (in a notation
reminiscent of two-level morphology), mostly to
assure that the rule is only applied to dates, thus
preventing the possibility of obtaining false
positives.
Concerning the definition of error patterns,
equal care must be taken for correct and
incorrect dates. In a first phase, we devised rules
for the errors but, after testing them on correct
dates from the development corpus, we had to
extend the rules so as to eliminate false positives.
As a result, more than 60 morphosyntactic
patterns (each corresponding to a finite-state
automata or transducer) were needed for the
definition of the six basic error patterns. They
range from small local constraints (45 automata
with less than 100 states) to the most complex
patterns (a transducer with 10,000 states and
475,000 arcs).

4 E v a l u a t i o n

Table 3 shows the results• As the development
corpus could be inspected during the refinement
of the parser, the results in the second and third
columns can be understood as an upper limit o f
the parser in its current state, with 100%
precision (no false alarms) and 91% recall.
The system obtains 84% recall over the corpus
of previously unseen 247 sentences• 31 errors
out of 37 are detected giving the exact cause o f
the error (in cases with multiple errors almost all
of them were found)•

Development corpus
411

7 9%
84 91%
0

Table 3. Evaluation results.

Test corpus
'247

6 16%
31 84%

5

i For more information on XFST regular expressions,
see (Karttunen et al. 1997)•

2 7

Example
atxiloketa 1998ko urtarriletik irailaren 16ra ...

the imprisonment from January 1998 till the 16th of
September

Donostian 1960ko Urtarrilaren jaioa
born in Donostia in the January of 1960

etorriko da 1997ko irailaren 26ko 1 : 15etan
it will come the 26 of Septernber 1997 at 1:15

atzotik 1999ko abenduaren 31 arte
,from ~esterday until the 31st of December

Primakovek 1998ko irailaren 1 in hartu zuen ...
Primakov took it on the 11th o[September 1998

Cause of the error

Structure similar to a date incorrectly interpreted as a
date and flagged as erroneous.

Incorrect Basque construction that is interpreted as a
date.

The system takes the hour number (1:15) as the day of
the month.

The grammar does not cover the arte (until) particle, so
a correct date is flagged as ungrammatical.

The unknown word Primakov is interpreted as a
locative.

Table 4. False alarms.

Regarding precision, there are 5 false alarms,
that is, correct dates or sentences similar to dates
flagged as erroneous. If these false positives are
divided by the number of sentences (247) of the
test corpus, we can estimate the false alarm rate
to be 2.02% over the number of dates in real
texts. Table 4 examines some of the false alarms,
two of them due to expressions similar to dates
that are mistaken for dates, other two relate to
constructions not taken into account in the
design of the partial grammar, and the last one is
due to insufficient lexical coverage.
Although the results are promising, more corpus
data will be needed in order to maximize
precision.

C o n c l u s i o n s

This work presents the application of a parsing
system to syntactic error detection. The reported
experiment has as its main features:

• It is corpus-based. If a system is to be useful,
it must be tested on real examples of both
correct and incorrect sentences. Although this
may seem evident, it has not been the case for
most of the previous work on syntactic errors.
This implies the existence of big corpora and,
for most of the errors, manual annotation.

• The most successful methods for error
detection, i.e., relaxation of syntactic
constraints and error patterns over a chart,
have been combined with good results. On
the other hand, the relaxation is not applied
dynamically at parsing time, but it has been
manually coded. This implies a considerable
amount of work, as we had to consider the
formats for valid sentences as well as for all
their incorrect variants.

• A partial robust parsing architecture provides
a powerful way to consider simultaneously
information at the morphemic and syntactic
levels. The unification grammar is necessary

to treat aspects like complex agreement and
word order variations, currently unsolvable
using finite-state networks. It constructs all
the possible syntactic components. On the
other hand, regular expressions in the form
of automata and transducers are suitable for
the definition of complex error patterns
based on linguistic units.

We are currently exploring new extensions to the
system:

• Adding new kinds of errors. Our system, as
well as any system dealing with syntactic
errors, suffers the problem of scaling up, as
the addition of new types of errors will
suppose an increment in the number of error
patterns that involves a considerable amount
of work in the process o f hand-coding the
rules. The possible interaction among rules
for different error types must be studied,
although we expect that the rule sets will be
mostly independent. Another interesting
aspect is the reusability of the linguistic
patterns: in the process of treating errors in
dates some patterns describe general
linguistic facts that can be reused, while
others pertain to idiosyncratic facts of dates.

We plan to extend the system to other
qualitatively different types of errors, such as
those involving agreement between the main
components of the sentence, which is very
rich in Basque, errors due to incorrect use o f
subcategorization and errors in post-
positions. Although the number of potential
syntactic errors is huge, we think that the
treatment of the most frequent kinds of error
with high recall and precision can result in
useful grammar-checking tools.

• Automatic acquisition of error detecting
patterns. Although manual examination
seems unavoidable we think that, with a
corpus of errors big enough, machine
learning techniques could be applied to the

2 8

problem of writing error patterns (Golding
and Roth 1996; Mangu and Brill 1997). This
solution would be even more useful in the
case of combinations of different errors. In
any case, it must be examined whether
automatic methods reach the high precision
and reliability obtained by hand-coded rules.

• Using either hand-coded rules or
automatically learned ones, both methods
have still the problem .of obtaining and
marking big test corpora, a process that will
have to be made mostly manually (except for
some limited cases like word confusion
(Golding and Roth 1996)). This is one of the
major bottlenecks.

Acknowledgements
This research is supported by the Basque
Government, the University of the Basque
Country and the Interministerial Commission for
Science and Technology (CICYT). Thanks to
Gorka Elordieta for his help writing the final
version of the paper.

References

Agirre E., Gojenola K., Sarasola K., Voutilainen A.
(1998) Towards a Single Proposal in Spelling
Correction. COLING-ACL'98, Montreal.

Abney S. (1997) Part-of-Speech Tagging and Partial
Parsing. In Corpus-Based Methods in Language and
Speech Processing, Kluwer, Dordrecht, 1997.

Aldezabal I., Gojenola K., Oronoz M. (1999)
Combining Chart-Parsing and Finite State Parsing.
Proceedings of the Student Session of the European
Summer School in Logic, Language and
Computation (ESSLLI'99), Utrecht.

Aldezabal I., Gojenola K., Sarasola K. (2000) A
Bootstrapping Approach to Parser Development.
Sixth International Workshop on Parsing
Technologies, Trento.

Alegria I., Artola X., Sarasola K., Urkia. M. (1996)
Automatic morphological analysis of Basque. Literary
& Linguistic Computing, Vol. 11.

Atwell E., Elliott S. (1987) Dealing with Ill-Formed
English Text. In The Computational Analysis of
English: a Corpus-Based Approach, De. Longman.

Douglas, S., Dale R. 1992. Towards Robust PATR.
COL1NG'92, Nantes.

Ezeiza N., Alegria I., Arriola J.M., Urizar R., Aduriz I.
(1998) Combining Stochastic and Rule-Based
Methods for Disambiguation in Agglutinative
Languages. COLING-ACL-98, Montreal.

Golding A. and Schabes. Y. (1996) Combining trigram-
based and feature-based methods for context-sensitive
spelling correction. In Proc. of the 34th ACL
Meeting, Santa Cruz, CA.

Golding A., Roth. D. (1996) A Winnow-based
Approach to Spelling Correction. Proceedings of the
13th International Conference on Machine Learning,
ICML'96.

Heidom G. E., Jensen K., Miller L. A., Byrd R. J.,
Chodorow M. S. (1982) The EPISTLE text-critiquing
system. IBM Systems Journal, Vol. 21, No. 3.

Karttunen L., Chanod J-P., Grefenstette G., Schiller A.
(1997) Regular Expressions For Language
Engineering. Journal of Natural Language
Engineering.

Kukich K. (1992) Techniques for automatically
correcting words in text. In ACM Computing
Surveys, Vol. 24, N. 4, December, pp. 377-439.

Mangu L., Brill E. (1997) Automatic Rule Acquisition
for Spelling Correction. Proceedings of the 14th
International Conference on Machine Learning,
ICML'97.

Mellish C. (1989) Some Chart-Based Techniques for
Parsing Ill-Formed Input. EACL' 89.

Menzel W., Schr6der I. (1999) Error Diagnosis for
Language Learning Systems. RECALL, special
edition, May 1999.

Min K., Wilson W. (1998) Integrated Control of Chart
Items for Error Repair. COLING-ACL'98, Montreal.

Roche E., Schabes Y. (1997) Finite-State Language
Processing. MIT Press.

Weischedel R.M., Sondheimer N.K. (1983) Meta-rules
as a Basis for Processing Ill-Formed Input. American
Journal of Computational Linguistics, 9.

29

