
Spelling Correction in Agglutinative Languages

K e m a l O f l a z e r and C e m a l e d d i n G / i z e y
D e p a r t m e n t of C o m p u t e r Engineer ing and I n f o r m a t i o n Science

Bi lkent Univers i ty
Ankara , 06533, Turkey
ko@cs, bilkent, edu. tr

1 I n t r o d u c t i o n

Spelling correction is an important component of
any system for processing text. Agglutinative lan-
guages such as Turkish or Finnish, differ from lan-
guages like English in the way lexical forms are gen-
erated. Typical nominal or a verbal root may gener-
ate thousands (or even millions) of valid forms which
never appear in the dictionary. For instance, we
can give the following (rather exaggerated) exam-
ple from Turkish:

uygarla~tzramayabileceklerimizdenmi~sinizcesine 1
whose morpheme breakdown is:

uygar -lag -tzr -area
civilized +BECOME CAUS +NEG
-yabil -ecek -let -irniz
+POT +FUT +3PL +POSS-1SG
-den -mi~ -siniz -cesine
+ABL +NARR +2PL +AS-IF

Methods developed for spelling correction for lan-
guages like English (see the review by Kukich (Ku-
kich, 1992)) are not readily applicable to agglutina-
tive languages. This poster presents an approach to
spelling correction in agglutinative languages that
is based on two-level morphology and a dynamic-
programming based search algorithm. After an
overview of our approach, we present results from
experiments with spelling correction in Turkish.

2 S p e l l i n g c o r r e c t i o n a l g o r i t h m

Our approach comprises two-steps: (1) determining
all the roots from the dictionary that can be the root
of the misspelled word, and (2) generating (system-
atically) all the possible words that "resemble" the
given character string, from these roots. The first
step of the problem is relatively easy because of the
static structure of the root dictionary. Techniques
developed for spelling correction, say, in English can
usually be applied here. The second step involves
producing all the possible words from the selected
roots and requires a generate and test search proce-
dure.

1This is an adverb meaning roughly "(behaving) as
if you were one of those whom we might not be able
civilize."

We denote the set of the surface forms of the roots
in the language by R. We denote by X and Y
strings formed using the alphabet of the language.
X will denote the surface form of the incorrect or
misspelled string, and Y will typically denote the
surface string that is a (possibly partial) candidate
word. Yle~ will denote the lexical form of this candi-
date string? We assume the existence of a function,
surface() to generate surface strings from lexical st-
rings, i.e., surface(Yze~) = Y . The edit distance
metric e d (Z , Y) (Du and Chang, 1992) measures
how many unit operations (insertion, deletion, re-
placement of single character and transposition of
two adjacent characters) are necessary to convert
one string X into another Y.

We would like to abstract the behavior of a mor-
phological generator and analyzer for the given lan-
guage by two finite state automata. A finite state
generator Mg = (P, 6, V, S, F) where P is a set of
states, $ is the state transition function, V is the
output alphabet, S is the starting state, and F is
a set of final states, generates, all correctly formed
words of the language. The transitions of Mg are
of the form /5(pi) = pj (Pi and pj 6 P), with an
output v~ 6 V which denotes the lexical form of
a morpheme in the language and also labels the
transition. It should be noted that it is possible to
go from one state Pi to another pj by more than one
transition, outputting a different morpheme. We say
a string Ytez is generated by Mg, if Y)e, is formed
by concatenating, in order, the outputs of the ma-
chine as we traverse starting from S to one of the
states in F. We denote by L(Mg) as the set of all
lexical strings generated by Mg. We also assume a
finite state recognizer Mr which recognizes whether
a given surface string is in the language or not.

The spelling correction problem can now be for-
mulated as follows: Given an incorrect word X
(rejected by Mr), a!ad an edit distance threshold
t, find the solution set of possible correct words
S(X,t) = {Yled(X,Y) < t and Y = surface(Yt~,)
and Y~e, 6 L(Mg)} in viable time and space.

2Lexical and surface are used in the two-level mor-
phology sense.

194

The set of all the possible roots for the incorrect
word X is defined as PR(X, t) = {r [ed(X[i],r) <
t and 1 < i < m and r E R}. 3 We assume that
PR(X, t) can be computed by a standard q - g r a m
technique. Using a small number (3 - 5) of 2-grams,
gives satisfactory solutions in our case.

Assuming that we have a set of root words found
as described above, we now have to generate words in
the language having these roots, that do not deviate
from the given misspelled string by more than the
threshold. The solution requires a generate and test
probing of the finite-state automaton Mg, starting
with the start state S. We now have to find all the
paths from this state to one of the final states using
the roots in PR(X, t), so that when the morphemes
along this pa th are concatenated and surface string
is generated, it is within an edit distance t of X.

When the search starts morphemes are concate-
nated to root and the length of the candidate lexical
string Yle~ increases. After one step of the search,
the partial surface string Y is compared with a suit-
able prefix of X. In most of the cases the candidate
Y will deviate from these prefixes of X by more than
the threshold without reaching a final state, so that
we can no longer get to a viable solution. In such
cases we do not consider any further transitions from
that state. Special at tention has to paid when a suf-
fixation changes the surface realization of morpheme
immediately to the left.

3 R e s u l t s f r o m e x p e r i m e n t s w i t h
s p e l l i n g c o r r e c t i o n i n T u r k i s h

We first present a spelling correction example from
our implementation where we used bigrams (q = 2),
and we chose the number of bigrams to use for deter-
mining the root, k, as 3 (see Figure 1). We tested

E X A M P L E
Misspelled t:word: qal§rnalamyla
Threshold : 2
Solutions: yam§malamyla yat l§malanyla
on left edge yapl§malarlyla yakl§malarlyla

i¢~,§malamyla qlk1§rnalarlyla
Candidate lq.oots:46a~ qakl 6al qah qam qan 6ap gar qat qatl

qag qak qakl§ qal qah§ ~ap qat qatl§ qav
~av qay

Solutions: 5 Lexical Surface

Edit distance 1 < ja t+H§+mA+lArH+ylA qat l§malanyla
~ap+ H§-b rnA+lArH-bylA qapl§malamyla
qah§-l-mA+lArH+ylA ~ah§rnalarlyla (corr.)

Edit Distance 2 q a v + m A + l A r H + y l A qavmalamyla

q'at + m A + I A r H + y l A qatmalamyla

Figure 1: Spelling correction example

3X[i] denotes the string of the first i characters of X.
4The duplicate entries in the list of candidate roots

in fact have different part-of-speech categories andhence
different morphota~=tics.

5A small subset of the whole solution set is given, due
to space limitations.

Table 1: Average number of operations per mis-
spelled word.

i IR cl°en L Ed. is.
30.9 311.2

2 108.4 4462.0

Ed6peDrm" I S°ln"] %Accuracy
2498.4 3.6 95.1

20680.4 52.0 95.1

our algorithm on a set of 141 randomly selected in-
correct words from Turkish text with edit distances
1 (86%) and 2 (14%) to their correct form. The
morphological analyzer and generator that we used
was our two-level specification for Turkish (Oflaser,
1993), developed using the PC-KIMMO system. It
is, however, rather slow and can analyze only about
2 forms per second and can generate about 50 forms
a second on Sun Sparcstations. So, instead of using
timings, we counted the number of times certain ex-
pensive operations we called. The statistics shown in
Table 1 show the average number of morphological
recognitions and generations, and the edit distance
operations required, and the number of correct solu-
tions offered per misspelled input word. The last col-
umn indicates the percentage of cases the intended
correct form was found. We also have developed a
algorithm for ranking the solutions which offers the
intended correct form as the first in 74% of the cases
when t = 1.

4 C o n c l u s i o n s

This poster has presented a spelling correction algo-
r i thm for agglutinative languages that is based on a
two-level morphological generator and analyzer, and
a intelligent generate and test search procedure.

5 A c k n o w l e d g e m e n t

The research was supported in part by a NATO Sci-
ence for Stability Grant, TU-LANGUAGE.

R e f e r e n c e s

M .W. Du and S. C. Chang. 1992 A model and a fast
algorithm for multiple errors spelling correction.
Acta Informatica, 29:281-302.

K. Kukich. 1992 Techniques for automatical ly cor-
recting words in text. ACM Computing Surveys,
24:377-439.

K. Oflazer. 1993 Two-level description of Turkish
morphology. In Proceedings of the Sixth Confer-
ence of the European Chapter of the Association
for Computational Linguistics, April. A full ver-
sion appear in Literary and Linguistic Computing,
Vol.9 No.2, 1994.

195

