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Abstract 
Contextual spelling errors are defined as 
the use of an incorrect, though valid, word 
in a particular sentence or context. Tra- 
ditional spelling checkers flag misspelled 
words, but  they do not typically a t tempt  to 
identify words that  are used incorrectly in a 
sentence. We explore the use of Latent Se- 
mantic Analysis for correcting these incor- 
rectly used words and the results are com- 
pared to earlier work based on a Bayesian 
classifier. 

1 I n t r o d u c t i o n  

Spelling checkers are now available for all major  
word processing systems. However, these spelling 
checkers only catch errors that  result in misspelled 
words. If an error results in a different, but incor- 
rect word, it will go undetected. For example, quite 
may easily be mistyped as quiet. Another type of er- 
ror occurs when a writer simply doesn't  know which 
word of a set of homophones 1 (or near homophones) 
is the proper one for a particular context. For ex- 
ample, the usage of affect and effect is commonly 
confused. 

Though the cause is different for the two types 
of errors, we can treat  them similarly by examining 
the contexts in which they appear. Consequently, 
no effort is made to distinguish between the two er- 
ror types and both are called contextual spelling er- 
rors. Kukich (1992a; 1992b) reports that  40% to 
45% of observed spelling errors are contextual er- 
rors. Sets of words which are frequently misused or 
mistyped for one another are identified as confusion 
sets. Thus, from our earlier examples, { quiet, quite} 
and { affect, effect} are two separate confusion sets. 

In this paper, we introduce Latent Semantic Anal- 
ysis (LSA) as a method for correcting contextual 
spelling errors for a given collection of confusion sets. 

1 Homophones are words that sound the same, but are 
spelled differently. 

LSA was originally developed as a model for infor- 
mation retrieval (Dumais et al., 1988; Deerwester et 
al., 1990), but  it has proven useful in other tasks 
too. Some examples include an expert Expert  lo- 
cator (Streeter and Lochbaum, 1988) and a confer- 
ence proceedings indexer (Foltz, 1995) which per- 
forms better than a simple keyword-based index. 
Recently, LSA has been proposed as a theory of se- 
mantic learning (Landauer and Dumais, (In press)). 

Our motivation in using LSA was to test its effec- 
tiveness at predicting words based on a given sen- 
tence and to compare it to a Bayesian classifier. LSA 
makes predictions by building a high-dimensional, 
"semantic" space which is used to compare the sim- 
ilarity of the words from a confusion set to a given 
context. The experimental results from LSA predic- 
tion are then compared to both a baseline predic- 
tor and a hybrid predictor based on trigrams and a 
Bayesian classifier. 

2 R e l a t e d  W o r k  

Latent Semantic Analysis has been applied to the 
problem of spelling correction previously (Kukich, 
1992b). However, this work focused on detect- 
ing misspelled words, not contextual spelling errors. 
The approach taken used letter n-grams to build the 
semantic space. In this work, we use the words di- 
rectly. 

Yarowsky (1994) notes that  conceptual spelling 
correction is part of a closely related class of prob- 
lems which include word sense disambiguation, word 
choice selection in machine translation, and accent 
and capitalization restoration. This class of prob- 
lems has been attacked by many others. A number 
of feature-based methods have been tried, including 
Bayesian classifiers (Gale, Church, and Yarowsky, 
1992; Golding, 1995), decision lists (Yarowsky, 
1994), and knowledge-based approaches (McRoy, 
1992). Recently, Golding and Schabes (1996) de- 
scribed a system, Tribayes, that  combines a tr igram 
model of the words' parts of speech with a Bayesian 
classifier. The tr igram component of the system is 
used to make decisions for those confusion sets tha t  
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Figure 1: Singular value decomposition (SVD) of matrix X produces matrices T, S and D'. 

contain words with different parts of speech. The 
Bayesian component is used to predict t h e  correct 
word from among same part-of-speech words. 

Golding and Schabes selected 18 confusion sets 
from a list of commonly confused words plus a few 
that  represent typographical errors. They trained 
their system using a random 80% of the Brow[/cor- 
pus (Ku~era and Francis, 1967). The remaining 20% 
of the corpus was used to test how well the system 
performed. We have chosen to use the same 18 con- 
fusion sets and the Brown corpus in order to compare 
LSA to Tribayes. 

3 L a t e n t  S e m a n t i c  Analysis 

Latent Semantic Analysis (LSA) was developed at 
Bellcore for use in information retrieval tasks (for 
which it is also known as LSI) (Dumais et al., 1988; 
Deerwester et al., 1990). The premise of the LSA 
model is that  an author begins with some idea or 
information to be communicated. The selection of 
particular lexical items in a collection of texts is 
simply evidence for the underlying ideas or informa- 
tion being presented. The goal of LSA, then, is to 
take the "evidence" (i.e., words) presented and un- 
cover the underlying semantics of the text passage. 
Because many words are polysemous (have multi- 
ple meanings) and synonymous (have meanings in 
common with other words), the evidence available 
in the text tends to be somewhat "noisy." LSA at- 
tempts to eliminate the noise from the data by first 
representing the texts in a high-dimensional space 
and then reducing the dimensionality of the space 
to only the most important  dimensions. This pro- 
cess is described in more detail in Dumais (1988) 
or Deerwester (1990), but a brief description is pro- 
vided here. 

A collection of texts is represented in matr ix for- 
mat.  The rows of the matr ix correspond to terms 
and the columns represent documents. The indi- 
vidual cell values are based on some function of the 
term's frequency in the corresponding document and 
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its frequency in the whole collection. The func- 
tion for selecting cell values will be discussed in sec- 
tion 4.2. A singular value decomposition (SVD) is 
performed on this matrix. SVD factors the origi- 
nal matrix into the product of three matrices. We'll 
identify these matrices as T, S, and D'(see Figure 1). 
The T matrix is a representation of the original term 
vectors as vectors of derived orthogonal factor val- 
ues. D '  is a similar representation for the original 
document vectors. S is a diagonal matr ix  2 of rank r. 
It is also called the singular value matrix.  The sin- 
gular values are sorted in decreasing order along the 
diagonal. They represent a scaling factor for each 
dimension in the T and D'  matrices. 

Multiplying T, S, and D ' toge ther  perfectly repro- 
duces the original representation of the text  collec- 
tion. Recall, however, that  the original representa- 
tion is expected to be noisy. What  we really want 
is an approximation of the original space that  elim- 
inates the majority of the noise and captures the 
most important  ideas or semantics of the texts. 

An approximation of the original matr ix  is created 
by eliminating some number of the least important  
singular values in S. They correspond to the least 
important  (and hopefully, most noisy) dimensions 
in the space. This step leaves a new matr ix  (So) of 
rank k. 3 A similar reduction is made in T and D 
by retaining the first k columns of T and the first 
k rows of D'  as depicted in Figure 2. The product 
of the resulting To, So, and D'o matrices is a least 
squares best fit reconstruction of the original matr ix 
(Eckart and Young, 1939). The reconstructed ma- 
trix defines a space that  represents or predicts the 
frequency with which each term in the space would 
appear in a given document or text segment given 
an infinite sample of semantically similar texts (Lan- 

2A diagonal matrix is a square matrix that contains 
non-zero values only along the diagonal running from the 
upper left to the lower right. 

3The number of factors k to be retained is generally 
selected empirically. 
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Figure 2: Results of reducing the T, S and D' matrices produced by SVD to rank k. Recombining 
the reduced matrices gives X, a least squares best fit reconstruction of the original matr ix .  

dauer and Dumais,  (In press)). 
New text  passages can be projected into the space 

by computing a weighted average of the term vectors 
which correspond to the words in the new text.  In 
the contextual spelling correction task, we can gen- 
erate a vector representation for each text  passage 
in which a confusion word appears. The similarity 
between this text  passage vector and the confusion 
word vectors can be used to predict the most  likely 
word given the context or text in which it will ap- 
pear. ' 

4 E x p e r i m e n t a l  M e t h o d  

4.1 Data  
Separate corpora for training and testing LSA's abil- 
ity to correct contextual word usage errors were cre- 
ated from the Brown corpus (Ku~era and Francis, 
1967). The Brown corpus was parsed into individ- 
ual sentences which are randomly assigned to either 
a training corpus or a test corpus. Roughly 80% 
of the original corpus was assigned as the training 
corpus and the other 20% was reserved as the test 
corpus. For each confusion set, only those sentences 
in the training corpus which contained words in the 
confusion set were extracted for construction of an 
LSA space. Similarly, the sentences used to test the 
LSA space's predictions were those extracted from 
the test corpus which contained words from the con- 
fusion set being examined. The details of the space 
construction and testing method are described be- 
low. 

4.2 Training 
Training the system consists of processing the train- 
ing sentences and constructing an LSA space from 
them. LSA requires the corpus to be segmented into 
documents.  For a given confusion set, an LSA space 
is constructed by treat ing each training sentence as 
a document.  In other words, each training sentence 
is used as a column in the LSA matrix.  Before be- 
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ing processed by LSA, each sentence undergoes the 
following transformations:  context reduction, s tem- 
ming, bigram creation, and te rm weighting. 

C o n t e x t  r e d u c t i o n  is a step in which the sen- 
tence is reduced in size to the confusion word plus 
the seven words on either side of the word or up to 
the sentence boundary. The average sentence length 
in the corpus is 28 words, so this step has the effect 
of reducing the size of the da ta  to approximate ly  
half the original. Intuitively, the reduction ought to 
improve performance by disallowing the distantly lo- 
cated words in long sentences to have any influence 
on the prediction of the confusion word because they 
usually have little or nothing to do with the selec- 
tion of the proper word. In practice, however, the 
reduction we use had little effect on the predictions 
obtained from the LSA space. 

We ran some experiments in which we built LSA 
spaces using the whole sentence as well as other con- 
text window sizes. Smaller context sizes didn ' t  seem 
to contain enough information to produce good pre- 
dictions. Larger context sizes (up to the size of the 
entire sentence) produced results which were not sig- 
nificantly different from the results reported here. 
However, using a smaller context size reduces the 
total  number  of unique terms by an average of 13%. 
Correspondingly, using fewer terms in the initial ma-  
trix reduces the average running t ime and s torage 
space requirements by 17% and 10% respectively. 

S t e m m i n g  is the process of reducing each word to 
its morphological root. The goal is to t reat  the dif- 
ferent morphological variants of a word as the same 
entity. For example, the words smile, smiled, smiles, 
smiling, and smilingly (all f rom the corpus) are re- 
duced to the root smile and treated equally. We 
tried different s temming algorithms and all improved 
the predictive performance of LSA. The  results pre- 
sented in this paper are based on Porter 's  (Porter,  
1980) algorithm. 

B i g r a m  c r e a t i o n  is performed for the words tha t  
were not removed in the context reduction step. 



Bigrams are formed between all adjacent pairs of 
words. The bigrams are treated as additional terms 
during the LSA space construction process. In other 
words, the bigrams fill their own row in the LSA ma- 
trix. 

T e r m  w e i g h t i n g  is an effort to increase the 
weight or importance of certain terms in the high 
dimensional space. A local and global weighting 
is given to each te rm in each sentence. The local 
weight is a combination of the raw count of the par- 
ticular te rm in the sentence and the te rm's  prox- 
imity to the confusion word. Terms located nearer 
to the confusion word are given additional weight 
in a linearly decreasing manner.  The local weight 
of each term is then flattened by taking its log2. 
The global weight given to each te rm is an a t t empt  
to measure its predictive power in the corpus as a 
whole. We found tha t  entropy (see also (Lochbaum 
and Streeter, 1989)) performed best as a global mea- 
sure. Furthermore,  terms which did not appear  in 
more than one sentence in the training corpus were 
removed. 

While LSA can be used to quickly obtain satisfac- 
tory results, some tuning of the parameters  involved 
can improve its performance. For example, we chose 
(somewhat arbitrarily) to retain 100 factors for each 
LSA space. We wanted to fix this variable for all 
confusion sets and this number gives a good average 
performance. However, tuning the number of factors 
to select the "best" number for each space shows an 
average of 2% improvement  over all the results and 
up to 8% for some confusion sets. 

4.3 T e s t i n g  

Once the LSA space for a confusion set has been cre- 
ated, it can be used to predict the word (from the 
confusion set) most  likely to appear in a given sen- 
tence. We tested the predictive accuracy of the LSA 
space in the following manner.  A sentence from the 
test corpus is selected and the location of the confu- 
sion word in the sentence is treated as an unknown 
word which must  be predicted. One at a time, the 
words  from the confusion set are inserted into the 
sentence at the location of the word to be predicted 
and the same transformations tha t  the training sen- 
tences undergo are applied to the test sentence. The 
inserted confusion word is then removed from the 
sentence (but not the bigrams of which it is a part)  
because its presence biases the comparison which oc- 
Curs later. A vector in LSA space is constructed from 
the resulting terms. 

The word predicted most  likely to appear in a sen- 
tence is determined by comparing the similarity of 
each test sentence vector to each confusion word vec- 
tor from the LSA space. Vector similarity is evalu- 
ated by computing the cosine between two vectors. 
The pair of sentence and confusion word vectors with 
the largest cosine is identified and the corresponding 
confusion word is chosen as the most  likely word for 
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the test sentence. The predicted word is compared 
to the correct word and a tally of correct predictions 
is kept. 

5 R e s u l t s  

The results described in this section are based on the 
18 confusion sets selected by Golding (1995; 1996). 
Seven of the 18 confusion sets contain words that  are 
all the same part  of speech and the remaining 11 con- 
tain words with different parts  of speech. Golding 
and Schabes (1996) have already shown tha t  using a 
t r igram model to predict words from a confusion set 
based on the expected part  of speech is very effec- 
tive. Consequently, we will focus most  of our at ten- 
tion on the seven confusion sets containing words of 
the same part  of speech. These seven sets are listed 
first in all of our tables and figures. We also show 
the results for the remaining 11 confusion sets for 
comparison purposes, but as expected, these aren ' t  
as good. We, therefore, consider our system com- 
plementary to one (such as Tribayes) tha t  predicts 
based on part  of speech when possible. 

5.1 Basel ine Predict ion  System 

We describe our results in terms of a baseline predic- 
tion system that  ignores the context contained in the 
test sentence and always predicts the confusion word 
that  occurred most frequently in the training corpus. 
Table 1 shows the performance of this baseline pre- 
dictor. The left half of the table lists the various con- 
fusion sets. The next two columns show the training 
and testing corpus sentence counts for each confu- 
sion set. Because the sentences in the Brown corpus 
are not tagged with a markup  language, we identi- 
fied individual sentences automat ical ly  based on a 
small set of heuristics. Consequently, our sentence 
counts for the various confusion sets differ slightly 
from the counts reported in (Golding and Schabes, 
1996). 

The right half of Table 1 shows the most  frequent 
word in the training corpus from each confusion set. 
Following the most  frequent word is the baseline 
performance data. Baseline performance is the per- 
centage of correct predictions made by choosing the 
given (most frequent) word. The percentage of cor- 
rect predictions also represents the frequency of sen- 
tences in the test corpus tha t  contain the given word. 
The final column lists the training corpus frequency 
of the given word. The difference between the base- 
line performance column and the training corpus 
frequency column gives some indication about  how 
evenly distributed the words are between the two 
corpora. 

For example, there are 158 training sentences for 
the confusion set {principal, principle} and 34 test 
sentences. Since the word principle is listed in the 
right half of the table, it must. have appeared more 
frequently in the training set. From the final column, 



Confusion Set Train Test 
principal principle 158 34 
raise rise 117 36 
affect effect 193 53 
peace piece 257 62 
country county 389 91 
amount  number 480 122 
among between 853 203 
accept except 189 62 
begin being 623 161 
lead led 197 63 
passed past 353 81 
quiet quite 280 76 
weather whether 267 67 
cite sight site 128 32 
it's its 1577 391 
than then 2497 578 
you're your 734 220 
their there they're 4176 978 

Most Freq. Base (Train Freq.) 
principle 41.2 (57.6) 
rise 72.2 (65.0) 
effect 88.7 (85.0) 
peace 58.1 (59.5) 
country 59.3 (71.0) 
number 75.4 (73.8) 
between 62.1 (66.7) 
except 67.7 (73.5) 
being 88.8 (89.4) 
led 50.8 (52.3) 
past 64.2 (63.2) 
quite 88.2 (76.1) 
whether 73.1 (79.0) 
sight 62.5 (54.7) 
its 84.7 (84.9) 
than 58.8 (55.3) 
your 86.8 (84.5) 
there 53.4 (53.1) 

Table 1: Baseline performance for 18 confusion sets. The table is divided into confusion sets 
containing words of the same part of speech and those which have different parts of speech. 

we can see that  it occurred in almost 58% of the 
training sentences. However, it occurs in only 41% 
of the test sentences and thus the baseline predictor 
scores only 41% for this confusion set. 

5.2 Latent Semantic  Analysis  

Table 2 shows the performance of LSA on the con- 
textual spelling correction task. The table provides 
the baseline performance information for compari- 
son to LSA. In all but the case of {amount, number}, 
LSA improves upon the baseline performance. The 
improvement provided by LSA averaged over all con- 
fusion sets is about 14% and for the sets with the 
same part  of speech, the average improvement is 
16%. 

Table 2 also gives the results obtained by Tribayes 
as reported in (Golding and Schabes, 1996). The 
baseline performance given in connection with Trib- 
ayes corresponds to the partitioning of the Brown 
corpus used to test Tribayes. It. should be noted that. 
we did not implement Tribayes nor did we use the 
same partit ioning of the Brown corpus as Tribayes. 
Thus, the comparison between LSA and Tribayes is 
an indirect one. 

The differences in the baseline predictor for each 
system are a result of different partitions of the 
Brown corpus. Both systems randomly split the 
data such that  roughly 80% is allocated to the train- 
ing corpus and the remaining 20% is reserved for 
the test corpus. Due to the random nature of this 
process, however, the corpora must differ between 
the two systems. The baseline predictor presented 
in this paper and in (Golding and Schabes, 1996) 
are based on the same method so the correspond- 
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ing columns in Table 2 can be compared to get an 
idea of the distribution of sentences that  contain the 
most frequent word for each confusion set. 

Examination of Table 2 reveals that  it is difficult 
to make a direct comparison between the results of 
LSA and Tribayes due to the differences in the par- 
titioning of the Brown corpus. Each system should 
perform well on the most frequent confusion word 
in the training data. Thus, the distribution of the 
most frequent word between the the training and 
the test corpus will affect the performance of the 
system. Because the baseline score captures infor- 
mation about the percentage of the test corpus that  
should be easily predicted (i.e., the portion that  con- 
tains the most frequent word), we propose a com- 
parison of the results by examination of the respec- 
tive systems' improvement over the baseline score 
reported for each. The results of this comparison 
are charted in Figure 3. The horizontal axis in the 
figure represents the baseline predictor performance 
for each system (even though it varies between the 
two systems). The vertical bar thus represents the 
performance above (or below) the baseline predictor 
for each system on each confusion set. 

LSA performs slightly better, on average, than 
Tribayes for those confusion sets which contain 
words of the same part of speech. Tribayes clearly 
out-performs LSA for those words of a different part 
of speech. Thus, LSA is doing better than the 
Bayesian component of Tribayes, but it doesn't in- 
clude part of speech information and is therefore not 
capable of performing as well as the part of speech 
trigram component of Tribayes. Consequently, we 
believe that  LSA is a competitive alternative to 



LSA Tribayes 
Confusion Set Baseline LSA Baseline Tribayes 
principal principle 
raise rise 
affect effect 
peace piece 
country county 
amount number 
among between 
accept except 
begin being 
lead led 
passed past 
quiet quite 
weather whether 
cite sight site 
it's its 
than then 
you're your 
their there they're 

41.2 91.2 
72.2 80.6 
88.7 94.3 
58.1 83.9 
59.3 81.3 
75.4 56.6 
62.1 80.8 
67.7 82.3 
88.8 93.2 
50.8 73.0 
64.2 80.3 
88.2 90.8 
73.1 85.1 
62.5 78.1 
84.7 92.8 
58.8 90.5 
86.8 91.4 
53.4 73.9 

58.8 88.2 
64.1 76.9 
91.8 95.9 
44.0 90.0 
91.9 85.5 
71.5 82.9 
71.5 75.3 
70.0 82.0 
93.2 97.3 
46.9 83.7 
68.9 95.9 
83.3 95.5 
86.9 93.4 
64.7 70.6 
91.3 98.1 
63.4 94.9 
89.3 98.9 
56.8 97.6 

Table 2: LSA performance for 18 confusion sets. The results of Tribayes (Golding and Schabes, 
1996) are also given. 
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a Bayesian classifier for making predictions among 
words of the same part  of speech. 

5.3 P e r f o r m a n c e  T u n i n g  

The results tha t  have been presented here are based 
on uniform t rea tment  for each confusion set. Tha t  is, 
the initial data  processing steps and LSA space con- 
struction parameters  have all been the same. How- 
ever, the model does not require equivalent treat- 
ment  of all confusion sets. In theory, we should be 
able to increase the performance for each confusion 
set by tuning the various parameters  for each confu- 
sion set. 

In order to explore this idea further, we selected 
the confusion set {amount, number} as a testbed 
for performance tuning to a particular confusion set. 
As previously mentioned, we can tune the number 
of factors to a particular confusion set. In the case 
of this confusion set, using 120 factors increases the 
performance by 6%. However, tuning this param- 
eter alone still leaves the performance short of the 
baseline predictor. 

A quick examinat ion of the context in which both 
words appear  reveals tha t  a significant percentage 
(82%) of all t raining instances contain either the bi- 
gram of the confusion word preceded by the, fol- 
lowed by of, or in some cases, both.  For exam- 
ple, there are many  instances of the collocation 
the+humber+of in the training data. However, there 
are only one third as many  training instances for 
amount (the less frequent word) as there are for 
number. This si tuation leads LSA to believe that  the 
bigrams the+amount and amount+of have more dis- 
crimination power than the corresponding bigrams 
which contain number. As a result, LSA gives them 
a higher weight and LSA almost  always predicts 
amount when the confusion word in the test sen- 
tence appears  in this context. This local context is 
a poor predictor of the confusion word and its pres- 
ence tends to dominate  the decision made by LSA. 
By eliminating the words the and of from the train- 
ing and testing process, we permit  the remaining 
context to be used for prediction. The elimination 
of the poor local context combined with the larger 
number  of factors increases the performance of LSA 
to 13% above the baseline predictor (compared to 
11% for Tribayes). This is a net increase in perfor- 
mance of 32%! 

6 C o n c l u s i o n  

We've shown tha t  LSA can be used to at tack the 
problem of identifying contextual misuses of words, 
part icularly when those words are the same part  of 
speech. It  has proven to be an effective alternative 
to Bayesian classifiers. Confusions sets whose words 
are different parts  of speech are more effectively han- 
dled using a method which incorporates the word's 
part  of speech as a feature. We are exploring tech- 

niques for introducing part  of speech information 
into the LSA space so that  the system can make 
better  predictions for those sets on which it doesn' t  
yet measure up to Tribayes. We've also shown tha t  
for the cost of experimentat ion with different param-  
eter combinations, LSA's performance can be tuned 
for individual confusion sets. 

While the results of this experiment look very nice, 
they still don ' t  tell us anything about  how useful the 
technique is when applied to unedited text.  The 
testing procedure assumes that  a confusion word 
must  be predicted as if the author of the text  hadn ' t  
supplied a word or tha t  writers misuse the confusion 
words nearly 50% of the time. For example,  consider 
the case of the confusion set {principal, principle}. 
The LSA prediction accuracy for this set is 91%. 
However, it might  be the case that ,  in practice, peo- 
ple tend to use the Correct word 95% of the time. 
LSA has thus introduced a 4% error into the writing 
process. Our continuing work is to explore the error 
rate that  occurs in unedited text  as a means of as- 
sessing the "true" performance of contextual spelling 
correction systems. 
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