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Abstract

Backward beam search for dependency analy-
sis of Japanese is proposed. As dependencies
normally go from left to right in Japanese, it is
effective to analyze sentences backwards (from
right to left). The analysis is based on a statisti-
cal method and employs a beam search strategy.
Based on experiments varying the beam search
width, we found that the accuracy is not sen-
sitive to the beam width and even the analysis
with a beam width of 1 gets almost the same de-
pendency accuracy as the best accuracy using a
wider beam width. This suggested a determin-
istic algorithm for backwards Japanese depen-
dency analysis, although still the beam search
is effective as the N-best sentence accuracy is
quite high. The time of analysis is observed to
be quadratic in the sentence length.

1 Introduction

Dependency analysis is regarded as one of the
standard methods of Japanese syntactic anal-
ysis. The Japanese dependency structure is
usually represented by the relationship between
phrasal units called ‘bunsetsu’. A bunsetsu usu-
ally contains one or more content words, like a
noun, verb or adjective, and zero or more func-
tion words, like a postposition (case marker)
or verb/noun suffix. The relation between two
bunsetsu has a direction from a dependent to
its head. Figure 1 shows examples of bunsetsu
and dependencies. Each bunsetsu is separated
by “|”. The first segment “KARE-HA” consists
of two words, KARE (He) and HA (subject case
marker). The numbers in the “head” line show
the head ID of the corresponding bunsetsus.
Note that the last segment does not have a head,
and it is the head bunsetsu of the sentence. The
task of the Japanese dependency analysis is to
find the head ID for each bunsetsu.

The analysis proposed in this paper has two
conceptual steps. In the first step, dependency
likelihoods are calculated for all possible pairs
of bunsetsus. In the second step, an optimal de-
pendency set for the entire sentence is retrieved.
In this paper, we will mainly discuss the second
step, a method for finding an optimal depen-
dency set. In practice, the method proposed in
this paper should be able to be combined with
any systems which calculate dependency likeli-
hoods.

It is said that Japanese dependencies have the
following characteristics1:

(1) Dependencies are directed from left to right

(2) Dependencies don’t cross

(3) Each segment except the rightmost one has
only one head

(4) In many cases, the left context is not nec-
essary to determine a dependency

The analysis method proposed in this paper as-
sumed these characteristics and is designed to
utilize them. Based on these assumptions, we
can analyze a sentence backwards (from right
to left) in an efficient manner. There are two
merits to this approach. Assume that we are
analyzing the M -th segment of a sentence of
length N and analysis has already been done
for the (M + 1)-th to N -th segments (M < N).

The first merit is that the head of the depen-
dency of the M -th segment is one of the seg-

1Of course, there are several exceptions (S.Shirai,
1998), but the frequencies of such exceptions are neg-
ligible compared to the current precision of the system.
We believe those exceptions have to be treated when the
problems we are facing at the moment are solved. As-
sumption (4) has not been discussed very much, but our
investigation with humans showed that it is true in more
than 90% of the cases.



-----------------------------------------------------------------------
ID 1 2 3 4 5 6

KARE-HA | FUTATABI | PAI-WO | TSUKURI, | KANOJO-NI | OKUTTA.
(He-subj) (again) (pie-obj) (made ,) (to her) (present)

Head 6 4 4 6 6 -

Translation: He made a pie again and presented it to her.
-----------------------------------------------------------------------

Figure 1: Example a Japanese sentence, bunsetsus and dependencies

ments between M + 1 and N (because of as-
sumption 1), which are already analyzed. Be-
cause of this, we don’t have to keep a huge num-
ber of possible analyses, i.e. we can avoid some-
thing like active edges in a chart parser, or mak-
ing parallel stacks in GLR parsing, as we can
make a decision at this time. Also, we can use
the beam search mechanism, by keeping only a
certain number of analysis candidates at each
segment. The width of the beam search can be
easily tuned and the memory size of the pro-
cess is proportional to the product of the input
sentence length and the beam search width.

The other merit is that the possible heads
of the dependency can be narrowed down be-
cause of the assumption of non-crossing depen-
dencies (assumption 2). For example, if the
K-th segment depends on the L-th segment
(M < K < L), then the M -th segment can’t
depend on any segments between K and L.
According to our experiment, this reduced the
number of heads to consider to less than 50%.

The technique of backward analysis of
Japanese sentences has been used in rule-based
methods, for example (Fujita, 1988). How-
ever, there are several difficulties with rule-
based methods. First the rules are created by
humans, so it is difficult to have wide cover-
age and keep consistency of the rules. Also, it
is difficult to incorporate a scoring scheme in
rule-based methods. Many such methods used
heuristics to make deterministic decisions (and
backtracking if it fails in a searching) rather
than using a scoring scheme. However, the com-
bination of the backward analysis and the sta-
tistical method has very strong advantages, one
of which is the beam search.

2 Statistic framework

We combined the backward beam search strat-
egy with a statistical dependency analysis. The
detail of our statistic framework is described
in (Uchimoto et al., 1999). There have been
a lot of proposals for statistical analysis, in
many languages, in particular in English and
Japanese (Magerman, 1995) (Sekine and Grish-
man, 1995) (Collins, 1997) (Ratnaparkhi, 1997)
(K.Shirai et.al, 1998) (Fujio and Matsumoto,
1998) (Haruno et.al, 1997) (Ehara, 1998). One
of the most advanced systems in English is pro-
posed by Ratnaparkhi. It uses the Maximum
Entropy (ME) model and both of the accuracy
and the speed of the system are among the best
reported to date. Our system uses the ME
model, too. In the ME model, we define a set
of features which are thought to be useful in
dependency analysis, and it learns the weights
of the features from training data. Our features
include part-of-speech, inflections, lexical items,
the existence of a comma or bracket between
the segments, and the distance between the seg-
ments. Also, combinations of those features are
used as additional features. The system cal-
culates the probabilities of dependencies based
on the model, which is trained using a training
corpus. The probability of an entire sentence is
derived from the product of the probabilities of
all the dependencies in the sentence. We choose
the analysis with the highest probability to be
the analysis of the sentence. Although the ac-
curacy of the analyzer is not the main issue of
the paper, as any types of models which use de-
pendency probabilities can be implemented by
our method, the performance reported in (Uchi-
moto et al., 1999) is one of the best results re-
ported by statistically based systems.



3 Algorithm

In this section, the analysis algorithm will be de-
scribed. First the algorithm will be illustrated
using an example, then the algorithm will be
formally described. The main characteristics of
the algorithm are the backward analysis and the
beam search.

The sentence “KARE-HA FUTATABI PAI-WO
TSUKURI, KANOJO-NI OKUTTA. (He made a pie
again and presented it to her)” is used as an in-
put. We assume the POS tagging and segmen-
tation analysis have been done correctly before
starting the process. The border of each seg-
ment is shown by “|”. In the figures, the head of
the dependency for each segment is represented
by the segment number shown at the top of each
segment.
-----------------------------------------------------------------

<Initial>

ID 1 2 3 4 5 6

KARE-HA | FUTATABI | PAI-WO | TSUKURI, | KANOJO-NI | OKUTTA.

(He-subj) (again) (pie-obj) (made ,) (to her) (present)

-----------------------------------------------------------------

Algorithm

1. Analyze up to the second segment from the
end
The last segment has no dependency, so we
don’t have to analyze it. The second seg-
ment from the end always depends on the
last segment. So the result up to the sec-
ond segment from the end looks like the
following.

-----------------------------------------------------------------

<Up to the second segment from the end>

ID 1 2 3 4 5 6

KARE-HA | FUTATABI | PAI-WO | TSUKURI, | KANOJO-NI | OKUTTA.

(He-subj) (again) (pie-obj) (made ,) (to her) (present)

Cand 6 -

-----------------------------------------------------------------

2. The third segment from the end
This segment (“TSUKURI,”) has two depen-
dency candidates. One is the 5th segment
(“KANOJO-NI”) and the other is the 6th seg-
ment (“OKUTTA”). Now, we use the proba-
bilities calculated using the ME model in
order to assign probabilities to the two can-
didates (Cand1 and Cand2 in the following
figure). Let’s assume the probabilities 0.1
and 0.9 respectively as an example. At the
tail of each analysis, the total probability
(the product of the probabilities of all de-
pendencies) is shown. The candidates are
sorted by the total probability.

-----------------------------------------------------------------

<Up to the third segment from the end>

ID 1 2 3 4 5 6

KARE-HA | FUTATABI | PAI-WO | TSUKURI, | KANOJO-NI | OKUTTA.

(He-subj) (again) (pie-obj) (made ,) (to her) (present)

Cand1 6 6 - (0.9)

Cand2 5 6 - (0.1)

-----------------------------------------------------------------

3. The fourth segment from the end
For each of the two candidates created at
the previous stage, the dependencies of the
fourth segment from the end (“PAI-WO”)
will be analyzed. For Cand1, the segment
can’t have a dependency to the fifth seg-
ment (“KANOJO-NI”), because of the non-
crossing assumption. So the probabili-
ties of the dependencies only to the fourth
(Cand1-1) and the sixth (Cand1-2) seg-
ments are calculated. In the example, these
probabilities are assumed to be 0.6 and 0.4.
A similar analysis is conducted for Cand2
(here probabilities are assumed to be 0.5,
0.1 and 0.4) and three candidates are cre-
ated (Cand2-1, Cand2-2 and Cand2-3).

-----------------------------------------------------------------

<Up to the fourth segment from the end>

ID 1 2 3 4 5 6

KARE-HA | FUTATABI | PAI-WO | TSUKURI, | KANOJO-NI | OKUTTA.

(He-subj) (again) (pie-obj) (made ,) (to her) (present)

Cand1-1 4 6 6 - (0.54)

Cand1-2 6 6 6 - (0.36)

Cand2-1 4 5 6 - (0.05)

Cand2-2 6 5 6 - (0.04)

Cand2-3 5 5 6 - (0.01)

-----------------------------------------------------------------

As the analysis proceeds, a large number
(almost L!) of candidates will be created.
However, by limiting the number of candi-
dates at each stage, the total number of
candidates can be reduced. This is the
beam search, one of the characteristics of
the algorithm. By observing the analyses
in the example, we can easily imagine that
this beam search may not cause a serious
problem in performance, because the candi-
dates with low probabilities may be incor-
rect anyway. For instance, when we set the
beam search width = 3, then Cand2-2 and
Cand2-3 in the figure will be discarded at
this stage, and hence won’t be used in the
following analyses. The relationship of the
beam search width and the accuracy ob-
served in our experiments will be reported
in the next section.



4. Up to the first segment
The analyses are conducted in the same
way up to the first segment. For example,
the result of the analysis for the entire sen-
tence will be shown below. (Appropriate
probabilities are used.)

-----------------------------------------------------------------

<Up to the first segment>

ID 1 2 3 4 5 6

KARE-HA | FUTATABI | PAI-WO | TSUKURI, | KANOJO-NI | OKUTTA.

(He-subj) (again) (pie-obj) (made ,) (to her) (present)

Cand1 6 4 4 6 6 - (0.11)

Cand2 4 4 6 6 6 - (0.09)

Cand3 6 4 6 5 6 - (0.05)

-----------------------------------------------------------------

Now, the formal algorithm is described induc-
tively in Figure 3. The order of the analysis is
quadratic in the length of the sentence.

4 Experiments

In this section, experiments and evaluations will
be reported. We use the Kyoto University Cor-
pus (version 2) (Kurohashi et.al, 1997), a hand
created Japanese corpus with POS-tags, bun-
setsu segments and dependency information.
The sentences in the articles from January 1,
1994 to January 8, 1994 (7,960 sentences) are
used for the training of the ME model, and
the sentences in the articles of January 9, 1994
(1,246 sentences) are used for the evaluation.
The sentences in the articles of January 10, 1994
are kept for future evaluations.

4.1 Basic Result
The evaluation result of our system is shown in
Table 1. The experiment uses the correctly seg-
mented and part-of-speech tagged sentences of
the Kyoto University corpus. The beam search
width is set to 1, in other words, the system runs
deterministically. Here, ‘dependency accuracy’

Table 1: Evaluation

Dependency accuracy 87.14% (9814/11263)
Sentence accuracy 40.60% (503/1239)
Average analysis time 0.03 sec

is the percentage of correctly analyzed depen-
dencies out of all dependencies. ‘Sentence accu-
racy’ is the percentage of the sentences in which
all the dependencies are analyzed correctly.

4.2 Beam search width and accuracy

In this subsection, the relationship between the
beam width and the accuracy is discussed. In
principle, the wider the beam search width, the
more analyses can be retained and the better
the accuracy can be expected. However, the re-
sult is somewhat different from the expectation.
Table 2 shows the dependency accuracy and
sentence accuracy for beam widths 1 through
20. The difference is very small, but the best

Table 2: Relationship between beam width and
accuracy

Beam width Dependency Sentence
Accuracy Accuracy

1 87.14 40.60
2 87.16 40.76
3 87.20 40.76
4 87.15 40.68
5 87.14 40.60
6 87.16 40.60
7 87.20 40.60
10 87.20 40.60
15 86.21 40.60
20 86.21 40.60

accuracy is obtained when the beam width is 11
(for the dependency accuracy), and 2 and 3 (for
the sentence accuracy). This proves that there
are cases where the analysis with the highest
product of probabilities is not correct, but the
analysis decided at each stage is correct. This is
a very interesting result of our experiment, and
it is related to assumption 4 regarding Japanese
dependency, mentioned earlier.

This suggests that when we analyze a
Japanese sentence backwards, we can do it de-
terministically without great loss of accuracy.
Table 3 shows where the analysis with beam
width 1 appears among the analyses with beam
width 200. It shows that most deterministic
analyses appear as the best analysis in the non-
deterministic analyses. Also, among the deter-
ministic analyses which are correct (503 sen-
tences), 498 sentences (99.0%) have the same
analysis at the best rank in the 200-beam-width
analyses. (Followed by 3 sentences at the sec-
ond, 1 sentence each at the third and fifth rank.)
It means that in most of the cases, the analysis



----------------------------------------------------------------
<Variable>

Length: Length of the input sentence in segments
W: The beam search width
C[len]: Candidate list; C for each segment keeps

the top W partial analyses from that segment
to the last segment.

<Initial Operation>

The second segment from the end depends on the last segment.
This analysis is stored in C[Length-1].

<Inductive Operation>

Assume the analysis up to the (M+1)-th segment has been finished.
For each candidate ‘c’ in C[M+1], do the following operation.

Compute the possible dependencies of the M-th segment compatible
with ‘c’. For each dependency, create a new candidate ‘d’ by
adding the dependency to ‘c’. Calculate the probability of ‘d’.
If C[M] has fewer than W entries, add ‘d’ to C[M];
else if the probability of ‘d’ > the probability of the least
probable entry of C[M], replace this entry by ‘d’;
else ignore ‘d’.

When the operation finishes for all candidates in C[M+1],
proceed to the analysis of the (M-1)-th segment.

Repeat the operation until the first segment is analyzed.
The best analysis for the sentence is the best candidate in
C[1].
----------------------------------------------------------------

Figure 2: Formal Algorithm

with the highest probability at each stage also
has the highest probability as a whole. This is
related to assumption 4. The best analysis with
the left context and the best analysis without
the left context are the same 95% of the time in
general, and 99% of the time if the analysis is
correct. These numbers are much higher than
our human experiment mentioned in the ear-
lier footnote (note that the number here is the
percentage in terms of sentences, and the num-
ber in the footnote is the percentage in terms of
segments.) It means that we may get good ac-
curacy even without left contexts in analyzing

Japanese dependencies.

4.3 N-Best accuracy

As we can generate N-best results, we measured
N-best sentence accuracy. Figure 3 shows the
N-best accuracy. N-best accuracy is the per-
centage of the sentences which have the correct
analysis among its top N analyses. By setting
a large beam width, we can observe N-best ac-
curacy. The table shows the N-best accuracy
when the beam width is set to 20. When we set
N = 20, 78.5% of the sentences have the cor-
rect analysis in the top 20 analyses. If we have



Table 3: The rank of the deterministic analysis

Rank 1 2 3 4 5 6 7 8 9 10
Frequency 1175 20 11 8 4 2 1 2 0 3

(%) (95.3) (1.6) (0.9) (0.6) (0.3) (0.2) (0.1) (0.2) (0.2)
Rank 11 12 13 14 15 16 17 18 19 20 and more

Frequency 1 0 1 0 1 0 1 1 0 8
(%) (0.1) (0.1) (0.1) (0.1) (0.1) (0.6)
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an ideal system for finding the correct analysis
among them, which may use semantic or con-
text information, we can have a very accurate
analyzer.

We can make two interesting observations
from the result. The accuracy of the 1-best
analysis is about 40%, which is more than half
of the accuracy of 20-best analysis. This shows
that although the system is not perfect, the
computation of the probabilities is probably
good in order to find the correct analysis at the
top rank.

The other point is that the accuracy is sat-
urated at around 80%. Improvement over 80%
seems very difficult even if we use a very large
beam width W . (If we set W to the number
of all possible combinations, which means al-
most L! for sentence length L, we can get 100%
N-best accuracy, but this is not worth consider-
ing.) This suggests that we have missed some-
thing important. In particular, from our inves-
tigation of the result, we believe that coordinate

structure is one of the most important factors
to improve the accuracy. This remains one area
of future work.

4.4 Speed of the analysis

Based on the formal algorithm, the analysis
time can be estimated as proportional to the
square of the input sentence length. Figure 4
shows the relationship between the analysis
time and the sentence length when we set the
beam width to 1. We use a Sun Ultra10 ma-
chine and the process size is about 8M byte.
We can see that the actual analyzing time al-
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Figure 4: Relationship between sentence length
and analyzing time

most follows the quadratic curve. The average
analysis time is 0.03 second and the average sen-
tence length is 10 segments. The analysis time
for the longest sentence (41 segments) is 0.29
second. We have not optimized the program in
terms of speed and there is room to shrink the
process size.



5 Conclusion

In this paper, we proposed a statistical Japanese
dependency analysis method which processes a
sentence backwards. As dependencies normally
go from left to right in Japanese, it is effective
to analyze sentences backwards (from right to
left). In this paper, we proposed a Japanese de-
pendency analysis which combines a backward
analysis and a statistical method. It can nat-
urally incorporate a beam search strategy, an
effective way of limiting the search space in the
backward analysis. We observed that the best
performances were achieved when the width is
very small. Actually, 95% of the analyses ob-
tained with beam width=1 were the same as
the best analyses with beam width=20. The
analysis time was proportional to the square of
the sentence length (number of segments), as
was predicted from the algorithm. The average
analysis time was 0.03 second (average sentence
length was 10.0 bunsetsus) and it took 0.29 sec-
ond to analyze the longest sentence, which has
41 segments. This method can be applied to
various languages which have the same or simi-
lar characteristics of dependencies, for example
Koran, Turkish etc.
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