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Abstract

We present an algorithm for unsupervised
induction of labeled parse trees. The al-
gorithm has three stages: bracketing, ini-
tial labeling, and label clustering. Brack-
eting is done from raw text using an un-
supervised incremental parser. Initial la-
beling is done using a merging model that
aims at minimizing the grammar descrip-
tion length. Finally, labels are clustered
to a desired number of labels using syn-
tactic features extracted from the initially
labeled trees. The algorithm obtains 59%
labeled f-score on the WSJ10 corpus, as
compared to 35% in previous work, and
substantial error reduction over a random
baseline. We report results for English,
German and Chinese corpora, using two
label mapping methods and two label set
sizes.

1 Introduction

Unsupervised learning of grammar from text
(‘grammar induction’) is of great theoretical and
practical importance. It can shed light on language
acquisition by humans and on the general structure
of language, and it can potentially assist NLP ap-
plications that utilize parser output. The problem
has attracted researchers for decades, and interest
has greatly increased recently, in part due to the
availability of huge corpora, computation power,
and new learning algorithms (see Section 2).

A fundamental issue in this research direction is
the representation of the resulting induced gram-
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mar. Most recent work (e.g., (Klein and Manning,
2004; Dennis, 2005; Bod, 2006a; Smith and Eis-
ner, 2006; Seginer, 2007)) annotates text sentences
using a hierarchical bracketing (constituents) or a
dependency structure, and thus represents the in-
duced grammar through its behavior in a parsing
task. Solan et al. (2005) uses a graph representa-
tion, while (Nakamura, 2006) simply uses a gram-
mar formalism such as PCFG. When the bracket-
ing approach is taken, some algorithms label the
resulting constituents, while most do not.

Each of these approaches can be justified or crit-
icized; a detailed discussion of this issue is be-
yond the scope of this paper. The algorithm pre-
sented here belongs to the first group, annotating
given sentences with labeled bracketing structures.
The main theoretical justification for this approach
is that many linguistic and psycho-linguistic theo-
ries posit some kind of a hierarchical labeled con-
stituent (or constructional) structure, arguing that it
has a measurable psychological (cognitive) reality
(e.g., (Goldberg, 2006)). The main practical argu-
ments in favor of this approach are that it enables
a detailed and large-scale evaluation using anno-
tated corpora, as is done in this paper, and that the
output format is suitable for many applications.

When an algorithm generates labeled structures,
the number of labels is an important issue. From a
theoretical point of view, the algorithm should also
discover the appropriate number of labels. How-
ever, for evaluation and application purposes it is
useful to base the number of labels on a specific
target grammar. In previous work, the number was
set to be equal to that in the target grammar. This
is a reasonable approach that we experiment with
in this paper. In addition, to reduce the possible
arbitrariness in this approach, we also experiment
with the number ofprominent labelsin the target
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grammar, determined according to their coverage
of corpus constituents.

Another issue relates to the nature of the in-
put. In most cases (e.g., in the Klein, Smith, Den-
nis and Bod papers above), the input consists of
part-of-speech (POS) sequences, derived from text
corpora by manual or automatic POS tagging. In
some cases (e.g., in the Seginer and Solan papers
above) it can consist of plain text. Again, each
approach has its pros and cons. The algorithm
we present here requires POS tags for its labeling
stages. Parts-of-speech are widely considered to
have a psychological reality (at least in English,
including when they are viewed as low-level con-
structions as in (Croft, 2001)), so this kind of input
is reasonable for theoretical research. Moreover, as
POS induction is of medium quality (Clark, 2003),
using a manually POS tagged corpus enables us to
measure the performance of other induction stages
in a controlled manner. Since supervised POS tag-
ging is of very high quality and very efficient com-
putationally (Brants, 2000), this requirement does
not seriously limit the practical applicability of a
grammar induction algorithm.

Our labeled bracketings induction algorithm
consists of three stages. We first induce unla-
beled bracketing trees using the algorithm given in
(Seginer, 2007)1. We then induce initial labels us-
ing aBayesian Model Merging (BMM)labeling al-
gorithm (Borensztajn and Zuidema, 2007), which
aims at minimizing the description length of the
input data and the induced grammar. Finally, the
initial labels are clustered to a desired number of
labels using syntactic features extracted from the
initially labeled trees. Previous work on labeled
brackets induction (Section 2) did not differentiate
the unlabeled structure induction phase from the
labeling phase, applying a single phase approach.

To evaluate labeled bracketings, we need a map-
ping between the label symbols of the induced and
target grammars. Previous work used a ‘greedy’,
many to one, mapping. We used both the greedy
mapping and a label-to-label (LL) mapping, since
greedy mapping is highly forgiving to structural
problems in the induced labeling. We report results
for two cases: one in which the number of labels in
the induced and target grammars is the same, and
one in which the former is the number of promi-
nent labels in the target grammar. We discuss how
this number can be defined and determined. We

1The algorithm uses raw (not POS tagged) sentences.

experimented with English (WSJ10, Brown10),
German (NEGRA10) and Chinese (CTB10) cor-
pora.

When comparing to previous work that used
manually annotated corpora in its evaluation
(Haghighi and Klein, 2006)2, we obtained 59.5%
labeled f-score on the WSJ10 setup vs. their 35.3%
(Section 5). We also show substantial improve-
ment over a random baseline, and that the cluster-
ing stage of our algorithm improves the results of
the second merging stage.

Section 2 discusses previous work. In Section 3
we detail our algorithm. The experimental setup
and results are presented in Sections 4 and 5.

2 Previous Work

Unsupervised parsing has attracted researchers for
decades (see (Clark, 2001; Klein, 2005) for recent
reviews). Many types of input, syntax formalisms,
search procedures, and success criteria were used.
Among the theoretical and practical motivations to
this problem are the study of human language ac-
quisition (in particular, an empirical study of the
poverty of stimulus hypothesis), preprocessing for
constructing large treebanks (Van Zaanen, 2001),
and improving language models (Chen, 1995).

In recent years efforts have been made to eval-
uate the algorithms on manually annotated cor-
pora such as the WSJ PennTreebank. Recently,
works along this line have for the first time out-
performed the right branching heuristic baseline
for English. These include the constituent–context
model (CCM) (Klein and Manning, 2002), its
extension using a dependency model (Klein and
Manning, 2004), (U)DOP based models (Bod,
2006a; Bod, 2006b; Bod, 2007), an exemplar–
based approach (Dennis, 2005), guiding EM using
contrastive estimation (Smith and Eisner, 2006),
and the incremental parser of (Seginer, 2007). All
of these use as input POS tag sequences, except
of Seginer’s algorithm, which uses plain text. All
of these papers induce unlabeled bracketing or de-
pendencies.

There are other algorithmic approaches to the
problem (e.g., (Adriaans, 1992; Daelemans, 1995;
Van Zaanen, 2001)). None of these had evaluated
labeled bracketing on annotated corpora.

In this paper we focus on the induction of
labeled bracketing. Bayesian Model Merging

2Using, as they did, a greedy mapping with an equal num-
ber of labels in the induced and target grammars.
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(BMM) (Stolcke, 1994; Stolcke and Omohundro,
1994) is a framework for inducing PCFG contain-
ing both a bracketing and a labeling. The charac-
teristics of this framework (separating prior prob-
ability, data likelihood and heuristic search proce-
dures) can also be found in the grammar induction
models of (Wolf, 1982; Langley and Stromsten,
2000; Petasis et al., 2004; Solan et al., 2005). The
BMM model used here (Borensztajn and Zuidema,
2007) combines features of (Petasis et al., 2004)
and Stolcke’s algorithm, applying the minimum
description length (MDL) principle. We use it here
only for initial labeling of existing bracketings.
The MDL principle was also used in (Grunwald,
1994; de Marcken, 1995; Clark, 2001).

There are only two previous papers we are
aware of that induce labeled bracketing and eval-
uate on corpora annotated with a similar repre-
sentation (Haghighi and Klein, 2006; Borensztajn
and Zuidema, 2007). We utilize and extend the
latter’s labeling algorithm. However, the evalu-
ation done by the latter dealt only with labeling,
using gold-standard (manually annotated) bracket-
ings. Thus, we can directly compare our results
only to (Haghighi and Klein, 2006), where two
models (PCFG× NONE andPCFG× CCM) are fully un-
supervised. These models use the inside-outside
and EM algorithms to induce bracketing and label-
ing simultaneously, as opposed to our three step
method3.

3 Algorithm

Our model consists of three stages: bracketing, ini-
tial labeling, and label clustering.

3.1 Induction of Unlabeled Bracketing

In this step, we apply the algorithm of (Seginer,
2007) to induce bracketing from plain text4. We
have chosen that algorithm because it is very fast
(both learning and parsing) and its code is publicly
available. We could have chosen any of the algo-
rithms mentioned above producing a similar output
format.

3.2 Initial Constituent Labeling

Our label clustering stage uses syntactic fea-
tures. To obtain these, we need an initial label-
ing on the bracketings computed in the previous

3Their other models, which were the core of their paper,
are semi-supervised.

4http://www.seggu.net/ccl

stage. To do that we modify the Bayesian Model
Merging (BMM) algorithm of (Borensztajn and
Zuidema, 2007), which induces context-free gram-
mars (bracketing and labeling) from POS tags,
combining features of the models of (Stolcke and
Omohundro, 1994) and (Petasis et al., 2004).

The BMM algorithm (Borensztajn and
Zuidema, 2007) uses an iterative heuristic
greedy search for an optimal PCFG according to
the Bayesian criterion of maximum posterior prob-
ability. Two operators define possible transitions
between grammars: MERGE creates generaliza-
tions by replacing two existing non-terminals
X1 andX2 that occur in the same contexts by a
single new non-terminalY ; CHUNK concatenates
repeating patterns by taking a sequence of two
non-terminalsX1 and X2 and creating a new
non-terminal Y that expands toX1X2.

We have used the algorithm to deal only with
labeling. It reads the initial rules of the grammar
from all productions implicit in the bracketed cor-
pus induced in the previous step. Every constituent
(except of the start symbol) is given a unique label.
Since only labeling is required, onlyMERGE oper-
ations are performed.

The objective function the algorithm tries to op-
timize at each step is the posterior probability cal-
culated according to Bayes’ Law:

MMAP = argmaxM P (M|X) = argmaxM P (X|M) · P (M)
(1)

whereP (X|M) is the likelihood of the dataX
given the grammarM andP (M) is the prior prob-
ability of the grammar. This is equivalent to mini-
mizing the function

−log(P (X|M)) − logP (m) := DDL + GDL := DL. (2)

Using a Minimal Description Length (MDL)
principle, BMM interprets this function as total de-
scription length (DL): The Grammar Description
LengthGDL = −logP (M) is the space needed
to encode the model, and the Data Description
Length DDL = −logP (X|M) is the space re-
quired to describe the data given the model. The
rationale for MDL is to prefer smaller grammars
that describe the data well. DDL and GDL are
computed as in (Stolcke, 1994; Stolcke and Omo-
hundro, 1994). In order to reduce the number of
grammars considered at each step, which naively
is quadratic in the number of non-terminals, a
method based on (Petasis et al., 2004) for effi-
ciently predicting DL gain is applied. The process
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is iterated until no additional merge operation im-
proves the objective function. Full details are given
in (Borensztajn and Zuidema, 2007).

3.3 Label Clustering

Label set size. BMM produces quite a large num-
ber of labels (4944 for WSJ105). In the third step
of our algorithm we reduce that number. We first
discuss the issue of the number of labels in induced
grammars, which is an important issue.

In many situations, it is reasonable to use a num-
berT identical to the number of labels in a given
target grammar, for example when that grammar
is used for applications or evaluation. This is the
approach in (Haghighi and Klein, 2006) for their
unsupervised models6, and we use it in part of our
evaluation. However, it is also reasonable to argue
that the granularity of syntactic categories (labels)
in the gold standard annotation of the corpora we
experiment with is somewhat arbitrary. For exam-
ple, in the WSJ Penn Treebank noun phrases are
annotated with the symbol NP, but there is no dis-
tinction between subject and object NPs. Incorpo-
rating such a distinction into the WSJ10 grammar
would result in a 27 labels grammar instead of 26.

To examine this issue, consider Figure 1, which
shows the amount of constituent coverage obtained
by a certain number of labels in the four corpora
we use (see Section 4). In all of them, about 95%
of the constituents are covered by 23% – 37% of
the labels, and the curve rises very sharply until
that 95% value. Motivated by this observation,
given a corpus annotated using a certain hierarchi-
cal labeled grammar, we refer to the set ofP labels
that cover at least 95% of the constituents in the
corpus as the grammar’sprominentlabels.

The prominent labels are not only the most
frequent in the corpus; each of them substan-
tially contributes to constituent labeling, while the
saliency of other labels is much smaller. It is
thus reasonable to assume that by addressing only
prominent labels, we address a level of granularity
that is uniform and basic (to the annotation scheme
used). As a result, by asking the induced grammar
to produceP labels, we reduce arbitrariness and
enable our testing to focus on our success in iden-
tifying the basic phenomena in the target grammar.

5For completeness, in Section 5 we provide results for this
grammar using greedy mapping evaluation. LL mapping eval-
uation cannot be performed when the numbers of induced and
target labels differ.

6Personal communication with the authors.
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Figure 1: For eachk, the fraction of constituents
labeled with thek most frequent labels, for WSJ10
(solid), Brown10 (triangles), NEGRA10 (dashed)
and CTB10 (dotted). In all corpora, more than
95% of the constituents are labeled using less than
10prominentlabels.

As a result, we generated two grammars for each
corpus we experimented with, one havingT labels
and the other havingP labels.
Clustering. we stop BMM when no improvement
to its objective function is possible, and cluster the
labels to conform to the size constraint.7

Denote the number of labels in the induced
grammar withM , the set ofD most frequent in-
duced labels withA, and the set consisting of the
other induced labels withB (|B| = M − D). If
M 6> D, there is nothing to do since the con-
straint holds. Otherwise, we map each label in
B to the label inA that exhibits the most simi-
lar syntactic behavior, as follows. We construct
a feature vector representation of each of the la-
bels, using3M + |K| features, whereK is the set
of POS tags in the corpus. The firstM features
correspond to parent-child relationships between
each of the induced labels and the represented la-
bel. Thei-th feature(i ∈ [1,M ]) is the number of
times thei-th label is the parent of the represented
label. Similarly, the nextM features correspond
to child-parent relationships, the nextM features
correspond to sibling relationships and the last|K|
features correspond to the number of times each
POS tag is the leftmost POS tag in a constituent
labeled by the represented label. Note that in order
to compute the values of the first3M features, we
needed an initial labeling on the induced bracket-
ings; this is the main reason for using the BMM
stage.

For each labelbi ∈ B, we compute the cosine

7It is possible to force BMM to iterate until a desired num-
ber of induced labels (T or P ) is achieved. However, the in-
duced grammars are of very low quality (see Section 5).
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metric between its vectorbv
i and that of everyaj ∈

A, mappingbi to the labelaj with which it obtains
the highest score:

Map(bi) = argmaxj

bv
i · av

j

|bv
i
||av

j
| (3)

The cosine metric grows when the same coordi-
nates (features) in both vectors have higher values.
As a result, vectors with high values of the same
features (corresponding to similar syntactic behav-
ior) get high scores.

4 Experimental Setup

We evaluated our algorithm on English, German
and Chinese corpora: the WSJ Penn Treebank,
containing economic English newspaper articles,
the Brown corpus, containing various English gen-
res, the Negra corpus (Brants, 1997) of German
newspaper text, and version 5.0 of the Chinese
Penn Treebank (Xue et al., 2002). In each cor-
pus, we used the sentences of length at most 108,
numbering 7422 (WSJ10), 9117 (Brown10), 7542
(NEGRA10) and 4626 (CTB10).

For each corpus the followingT andP values
were used: WSJ10:26, 8; Brown10: 28, 7; NE-
GRA10: 22, 6; CTB10: 24, 9. Each number pro-
duces a different grammar.

For labeled f-score evaluation, the induced la-
bels should be mapped to the target labels9. We
evaluated with two different mapping schemes.
For each pair(Xi, Yj) of induced and target labels,
let CXi,Yj be the number of times they label a con-
stituent having the same span in the same sentence.
Following (Haghighi and Klein, 2006) we applied
a greedy (many to one) mapping where the map-
ping is given byMap(Xi) = argmaxYj

CXi,Yj .
This greedy mapping tends to map many induced
labels to the same target label, and is therefore
highly forgiving of large mismatches between the
structures of the induced and target grammars.
Hence, we also applied a label-to-label (LL) map-
ping, computed by reducing this problem to op-
timal assignment in a weighted complete bipar-
tite graph, formally defined as follows. Given a
weighted complete bipartite graphG = (X ∪
Y ;X × Y ) where edge(Xi, Yj) has weightwij ,

8Excluding punctuation and null elements, according to
the scheme of (Klein, 2005).

9There are many possible methods for evaluating cluster-
ing quality (Rosenberg and Hirschberg, 2007). For our task,
overall f-score is a very natural one. We will address other
methods in future papers.

find a (one-to-one) matchingM from X to Y hav-
ing a maximal weight. In our case,X is the set of
model symbols,Y is the set ofT or P most fre-
quent target symbols (depending on the desired la-
bel set size used), andwij := CXi,Yj , computed as
in greedy mapping (the number of timesxi andyj

share a constituent). To make the graph complete,
we add zero weight edges between induced and
target labels that do not share any constituent. The
Kuhn-Munkres algorithm (Kuhn, 1955; Munkres,
1957) solves this problem, and we used it to per-
form the LL mapping (see also (Luo, 2005)).

We assessed the overall quality of our algorithm,
the quality of its labeling stage and the quality of
the syntactic clustering (SC) stage. For the over-
all quality of the induced grammar (both brack-
eting and labeling) we compare our results with
(Haghighi and Klein, 2006), using their setup10.
That setup was used for all numbers reported in
this paper. Note that a random baseline would
yield very poor results, so there is nothing to be
gained from comparing to it.

We assessed the quality of the labeling (MDL
and SC) stages alone, using only the correct brack-
etings produced by the first stage of the algorithm.
We compare to arandom baselineon these correct
constituents that randomly selects (using a uniform
distribution) a label for each constituent among the
set of labels allowed to the algorithm.

To asses the quality of the third stage (SC)
we compare the f-score performance of our three
stages labeled trees induction algorithm (bracket-
ing, MDL, SC) to an algorithm consisting of the
first two stages only (bracketing and MDL) and
the accuracy of the two stages labeling algorithm
(MDL, SC) to an algorithm where the syntactic
clustering stage is replaced by a simpler method
(MDL, random clustering).

5 Results

We start with comparing our algorithm with
(Haghighi and Klein, 2006), the only previous
work that produces labeled bracketing and was
tested on large manually annotated corpora. Their
relevant models arePCFG× NONE andPCFG× CCM

11.

10Brackets covering a single word are not counted, multi-
ple labels and the sentence level constituent are counted. Two
sentence level constituents are usually used: one for the root
symbol at the top (which was not counted), and one real sym-
bol (in WSJ10 it is usually, but not always, S), which was
counted. We had verified the setup with the authors.

11They focused on a different, semi-supervised, setting.
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This Paper PCFG× CCM PCFG× NONE

WSJ10 59.5 35.3 26.3

Table 1: F-scores of our algorithm and of the unsu-
pervised models in (Haghighi and Klein, 2006) on
WSJ10 (they did not test these models on the other
corpora we experimented with).

The number of labels in their induced grammar
equals the number of labels in the target grammar
(26 for WSJ10), and they had used a greedy map-
ping. Table 1 shows that our algorithm achieves
a superior f-score of 59.5% over their 35.3%.
Haghighi and Klein (2006) did not experiment
with the NEGRA10 and Brown10 corpora, and had
used version 3.0 of CTB10 while we have used the
substantially different version 5.0, so we can only
compare our results on WSJ10.

Table 2 shows the labeled recall, precision and f-
score of our algorithm on the various corpora and
mappings we use. On Brown10, NEGRA10 and
CTB10 (version 5.0) these are the first reported
results for this task. For reference, the table also
shows the unlabeled f-score results of Seginer’s
bracketing algorithm (our first stage)12.

We can see that greedy mapping is indeed more
forgiving than LL mapping, for bothT labels and
P labels. WSJ results are generally higher than for
the other corpora, probably because WSJ bracket-
ing results are higher than for the other corpora.

Comparing the left and right columns in each
of the table sections reveals that for greedy map-
ping, mapping to a higher number of labels results
in higher scores than mapping to a lower number.
LL mapping behaves in exactly the opposite way.
The explanation for this is that when we force the
mapping to cover all of the target labels (as done
by LL mapping forT labels), we move probabil-
ity mass from the correct, heavy labels to smaller
ones, thereby magnifying errors.

Table 4 addresses the quality of the whole la-
beling stage (MDL and SC) and of the SC stage.
We report the quality of our labels (top line for
each corpus in the table) the random baseline la-
bels (third line) and the labels of an algorithm
where MDL is performed and the syntactic clus-
tering is replaced by a random clustering (RC) al-
gorithm that, given a labelL that is not one of the
T or P most frequent labels, randomly selects one
of the most frequent labels and addsL to its clus-

12The numbers slightly differ from those in Seginer’s paper,
since we use the (Haghighi and Klein, 2006) setup.

Greedy LL
T P T P

WSJ10
MDL,SC 80 67 47 59
MDL,RC 67 61 37 42
Rand. Base. 30 30 5 14
Error Reduction 39%,71% 15%,53% 16%, 44% 29%, 52%
Brown10
MDL,SC 73 61 48 60
MDL,RC 68 59 46 51
Rand. Base. 27 27 4 14
Error Reduction 16%,63% 5%, 47% 4%, 46% 18%, 53%
NEGRA10
MDL,SC 79 72 65 72
MDL,RC 73 69 54 58
Rand. Base. 39 39 5 17
Error Reduction 22%,66% 10%,34% 24%,63% 33%,66%
CTB10
MDL,SC 70 67 44 55
MDL,RC 36 32 40 45
Rand. Base. 29 29 5 12
Error Reduction 53%,58% 51%, 54% 7%,41% 18%,49%

Table 4: Pure labeling results (taking into account
only the correct bracketings produced at stage 1),
compared to the random and (MDL,RC) baselines.
The left number in the Error Reduction lines slots
compares (MDL,SC) to (MDL,RC) and the right
number compares (MDL,SC) to random labeling.
(MDL,SC) algorithm is substantially superior.

ter (second line).13 All three labeling algorithms
used Seginer’s bracketing and results are reported
only for labels of correctly bracketed constituents.
Reported are the algorithm and baselines accuracy
(percentage of correctly labeled constituents after
the mapping has been performed) and the error re-
duction of the algorithm over the baselines (bottom
line). (MDL,SC) substantially outperforms both
the random baseline, demonstrating the power of
the whole labeling stage, and the (MDL,RC) algo-
rithm, demonstrating the power of the SC stage.

We compared our grammars to the grammars in-
duced by the first two stages (bracketing and then
MDL that stops when no DL improvement is pos-
sible) alone. Since the number of labels in these
grammars is much larger than in the target gram-
mar, only the evaluation with the greedy, many to
one, mapping is performed. Using greedy map-
ping, the F-score of these grammars constitutes an
upper bound on the F-score after the subsequent
SC stage. For WSJ10 (4944 labels), NEGRA10
(5557 labels), CTB10 (2298 labels) and Brown10
(3314 labels) F-score values are 64.6, 49.9, 38.7
and 52.5 compared to F-score values of 59.5(50.2),
45.6(42), 36.4(34.7) and 49.4(41.3) after mapping
all induced labels to theT (P ) most frequent la-
bels with SC (Table 2, ‘greedy’ section). The frac-

13Our algorithm’s numbers can be deduced from Table 2.
Results for all random baselines are averaged over 10 runs.
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Greedy Mapping LL Mapping Seginer
T labels P labels T labels P labels (unlabeled)

Corpus R P F R P F R P F R P F F
WSJ10 58 61 59.5 48.9 51.5 50.2 34.2 36.1 35.2 42.7 44.9 43.8 74.6
NEGRA10 54.2 39.3 45.6 50 36.2 42 44.7 32.4 37.6 49.5 35.9 41.7 58.1
CTB10 35.1 37.8 36.4 33.4 36 34.7 21.9 23.6 22.7 27.4 29.5 28.4 51.8
Brown10 47.6 51.3 49.4 39.9 43 41.3 31.3 33.7 32.4 38.9 41.9 40.3 67.8

Table 2: Labeled recall, precision and f-score of our algorithm, mapping model labels into target labels
greedily (left) and using LL mapping (right). The number of induced labels was set to be the total
numberT of target labels or the numberP of prominent labels in the target grammar (WSJ10: 26, 8;
Brown10: 28, 7; NEGRA10: 22, 6; CTB10: 24, 9). Also shown are Seginer’s unlabeled bracketing
results (rightmost column), which constitute an upper bound on the quality of subsequent labeling steps.

WSJ10 Brown10
Label T labels P labels T labels P labels

R P F R P F R P F R P F
S 77.1 77.6 77.3 75.4 67.9 71.5 72.3 60.9 66.1 69.3 63.2 66.1
NP 8.5 79.5 15.4 19.8 61.6 30 10.7 79.3 18.9 15.6 78 26
VP 20.4 67.6 31.3 64.2 36.7 46.7 9.8 72.5 17.3 14.1 59 22.8
PP 40.8 63.5 49.7 8 8.9 8.4 17.4 59.2 26.9 75.5 14.4 24.2

Table 3: Recall, Precision and F-score for constituents labeled with the 4 most frequent labels in the
WSJ10 and Brown10 test sets. LL mapping is used for evaluation.

tion of constituents covered by theT (P ) most fre-
quent labels before mapping with SC is 0.42(0.29),
0.33(0.23), 0.58(0.45) and 0.66(0.42), emphasiz-
ing the effect of SC on the final result.

MDL finds the best merge at each iteration. In-
stead of stopping it when no DL gains are possi-
ble, we can keep merging after the deltas become
worse than the total DL, stopping only when the
desired number of labels (T or P ) is achieved. We
tried this version of a (bracketing and MDL) algo-
rithm and obtained grammars of very low quality.
This further demonstrates the importance of the SC
stage.

Table 3 shows results for the four most frequent
labels of WSJ10 and Brown10 .

6 Conclusion

Unsupervised grammar induction is a central re-
search problem, possessing both theoretical and
practical significance. There is great value in pro-
ducing an output format consistent with and evalu-
ated against formats used in large human annotated
corpora. Most previous work of that kind produces
unlabeled bracketing or dependencies. In this pa-
per we presented an algorithm that induces labeled
bracketing. The labeling stages of the algorithm
use the MDL principle to induce an initial, rela-
tively large, set of labels, which are then clustered
using syntactic features. We discussed the issue of
the desired number of labels, and introduced the

concept of prominent labels, which allows us cov-
erage of the basic and most salient level of a target
grammar. Labels are clearly an important aspect of
grammar induction. Future work will explore their
significance for applications.

Evaluating induced labels is a complex issue.
We applied greedy mapping as in previous work,
and showed that our algorithm significantly out-
performs it. In addition, we introduced LL map-
ping, which overcomes some of the shortcomings
of greedy mapping. There are several other possi-
ble methods for evaluating labeled induced gram-
mars, and we plan to explore them in future work.
We evaluated on large human annotated corpora
of different English domains and three languages,
and showed that our labeling stages, and specif-
ically the SC stage, outperform several baselines
for all corpora and mapping methods.
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