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Abstract 

Near-synonyms are useful knowledge re-
sources for many natural language applica-
tions such as query expansion for information 
retrieval (IR) and paraphrasing for text gen-
eration. However, near-synonyms are not nec-
essarily interchangeable in contexts due to 
their specific usage and syntactic constraints. 
Accordingly, it is worth to develop algorithms 
to verify whether near-synonyms do match the 
given contexts. In this paper, we consider the 
near-synonym substitution task as a classifica-
tion task, where a classifier is trained for each 
near-synonym set to classify test examples 
into one of the near-synonyms in the set. We 
also propose the use of discriminative training 
to improve classifiers by distinguishing posi-
tive and negative features for each near-
synonym. Experimental results show that the 
proposed method achieves higher accuracy 
than both pointwise mutual information (PMI) 
and n-gram-based methods that have been 
used in previous studies. 

1 Introduction 

Near-synonym sets represent groups of words 
with similar meaning, which are useful knowl-
edge resources for many natural language appli-
cations. For instance, they can be used for query 
expansion in information retrieval (IR) (Moldo-
van and Mihalcea, 2000; Bhogal et al., 2007), 
where a query term can be expanded by its near-
synonyms to improve the recall rate. They can 
also be used in an intelligent thesaurus that can 
automatically suggest alternative words to avoid 
repeating the same word in the composing of 
text when there are suitable alternatives in its 

synonym set (Inkpen and Hirst, 2006; Inkpen, 
2007). These near-synonym sets can be derived 
from manually constructed dictionaries such as 
WordNet (called synsets) (Fellbaum, 1998), Eu-
roWordNet (Rodríguez et al., 1998), or clusters 
derived using statistical approaches (Lin, 1998). 

Although the words in a near-synonym set 
have similar meaning, they are not necessarily 
interchangeable in practical use due to their spe-
cific usage and collocational constraints. Pearce 
(2001) presented an example of collocational 
constraints for the context “         coffee”. In the 
given near-synonym set {strong, powerful}, the 
word “strong” is more suitable than “powerful” 
to fill the gap, since “powerful coffee” is an anti-
collocation. Inkpen (2007) also presented several 
examples of collocations (e.g. ghastly mistake) 
and anti-collocations (e.g. ghastly error). Yu et 
al. (2007) described an example of the context 
mismatch problem for the context “        under 
the bay” and the near-synonym set {bridge, 
overpass, viaduct, tunnel} that represents the 
meaning of a physical structure that connects 
separate places by traversing an obstacle. The 
original word (target word) in the given context 
is “tunnel”, and cannot be substituted by the 
other words in the same set since all the substitu-
tions are semantically implausible. Accordingly, 
it is worth to develop algorithms to verify 
whether near-synonyms do match the given con-
texts. Applications can benefit from this ability 
to provide more effective services. For instance, 
a writing support system can assist users to se-
lect an alternative word that best fits a given 
context from a list of near-synonyms. 

In measuring the substitutability of words, the 
co-occurrence information between a target word 
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(the gap) and its context words is commonly 
used in statistical approaches. Edmonds (1997) 
built a lexical co-occurrence network from 1989 
Wall Street Journal to determine the near-
synonym that is most typical or expected in a 
given context. Inkpen (2007) used the pointwise 
mutual information (PMI) formula to select the 
best near-synonym that can fill the gap in a 
given context. The PMI scores for each candi-
date near-synonym are computed using a larger 
web corpus, the Waterloo terabyte corpus, which 
can alleviate the data sparseness problem en-
countered in Edmonds’ approach. Following 
Inkpen’s approach, Gardiner and Dras (2007) 
also used the PMI formula with a different cor-
pus (the Web 1T 5-gram corpus) to explore 
whether near-synonyms differ in attitude. 

Yu et al. (2007) presented a method to com-
pute the substitution scores for each near-
synonym based on n-gram frequencies obtained 
by querying Google. A statistical test is then ap-
plied to determine whether or not a target word 
can be substituted by its near-synonyms. The 
dataset used in their experiments are derived 
from the OntoNotes copus (Hovy et al., 2006; 
Pradhan et al., 2007), where each near-synonym 
set corresponds to a sense pool in OntoNotes. 
Another direction to the task of near-synonym 
substitution is to identify the senses of a target 
word and its near-synonyms using word sense 
disambiguation (WSD), comparing whether they 
were of the same sense (McCarthy, 2002; Dagan 
et al., 2006). Dagan et al. (2006) described that 
the use of WSD is an indirect approach since it 
requires the intermediate sense identification 
step, and thus presented a sense matching tech-
nique to address the task directly. 

In this paper, we consider the near-synonym 
substitution task as a classification task, where a 
classifier is trained for each near-synonym set to 
classify test examples into one of the near-
synonyms in the set. However, near-synonyms 
share more common context words (features) 
than semantically dissimilar words in nature. 
Such similar contexts may decrease classifiers’ 
ability to discriminate among near-synonyms. 
Therefore, we propose the use of a supervised 
discriminative training technique (Ohler et al., 
1999; Kuo and Lee, 2003; Zhou and He, 2009) 
to improve classifiers by distinguishing positive 
and negative features for each near-synonym. To 

our best knowledge, this is the first study that 
uses discriminative training for near-synonym or 
lexical substitution. The basic idea of discrimi-
native training herein is to adjust feature weights 
according to the minimum classification error 
(MCE) criterion. The features that contribute to 
discriminating among near-synonyms will re-
ceive a greater positive weight, whereas the 
noisy features will be penalized and might re-
ceive a negative weight. This re-weighting 
scheme helps increase the separation of the cor-
rect class against its competing classes, thus im-
proves the classification performance.  

The proposed supervised discriminative train-
ing is compared with two unsupervised methods, 
the PMI-based (Inkpen, 2007) and n-gram-based 
(Yu et al., 2007) methods. The goal of the 
evaluation is described as follows. Given a near-
synonym set and a sentence with one of the near-
synonyms in it, the near-synonym is deleted to 
form a gap in this sentence. Figure 1 shows an 
example. Each method is then applied to predict 
an answer (best near-synonym) that can fill the 
gap. The possible candidates are all the near-
synonyms (including the original word) in the 
given set. Ideally, the correct answers should be 
provided by human experts. However, such data 
is usually unavailable, especially for a large set 
of test examples. Therefore, we follow Inkpen’s 
experiments to consider the original word as the 
correct answer. The proposed methods can then 
be evaluated by examining whether they can re-
store the original word by filling the gap with the 
best near-synonym.  

The rest of this work is organized as follows. 
Section 2 describes the PMI and n-gram-based 
methods for near-synonym substitution. Section 
3 presents the discriminative training technique. 
Section 4 summarizes comparative results. Con-
clusions are finally drawn in Section 5. 

Sentence: This will make the           message 
easier to interpret. 

Original word: error 

Near-synonym set: {error, mistake, oversight}

Figure 1. Example of a near-synonym set and a 
sentence to be evaluated. 
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2 Unsupervised Methods 

2.1 PMI-based method 

The mutual information can measure the co-
occurrence strength between a near-synonym 
and the words in a given context. A higher mu-
tual information score indicates that the near-
synonym fits well in the given context, thus is 
more likely to be the correct answer. The point-
wise mutual information (Church and Hanks, 
1991) between two words x and y is defined as  

2
( , )( , ) log ,

( ) ( )
P x yPMI x y

P x P y
=            (1) 

where ( , ) ( , )P x y C x y N=  denotes the prob-
ability that x and y co-occur; ( , )C x y  is the 
number of times x and y co-occur in the corpus, 
and N is the total number of words in the corpus. 
Similarly, ( ) ( )P x C x N= , where C(x) is the 
number of times x occurs in the corpus, and 

( ) ( )P y C y N= , where C(y) is the number of 
times y occurs in the corpus. Therefore, (1) can 
be re-written as  

2
( , )( , ) log .
( ) ( )

C x y NPMI x y
C x C y

⋅
=

⋅
          (2) 

Inkpen (2007) computed the PMI scores for each 
near-synonym using the Waterloo terabyte cor-
pus and a context window of size 2k (k=2). 
Given a sentence s with a gap, 

1 1 2... ...      ... ...k k ks w w w w+= , the PMI score for 
a near-synonym NSi to fill the gap is defined as  

1

2

1

( , ) ( , )

                        ( , ).
=

= +

= +∑
∑

k
j j ii

k
j ii k

PMI NS s PMI NS w

PMI NS w
          (3) 

The near-synonym with the highest score is con-
sidered as the answer. In this paper, we use the 
Web 1T 5-gram corpus to compute PMI scores, 
the same as in (Gardiner and Dras, 2007). The 
frequency counts C(‧) are retrieved from this 
corpus in the same manner within the 5-gram 
boundary.  

2.2 N-gram-based method 

The n-grams can capture contiguous word asso-
ciations in given contexts. Given a sentence with 
a gap, the n-gram scores for each near-synonym 

are computed as follows. First, all possible n-
grams containing the gap are extracted from the 
sentence. Each near-synonym then fills the gap 
to compute a normalized frequency according to  

( )log ( ) 1
( ) ,

log ( )
j

j

i
NSi

NS
j

C ngram
Z ngram

C NS

+
=         (4) 

where ( )
j

i
NSC ngram  denotes the frequency of an 

n-gram containing a near-synonym, ( )jC NS  
denotes the frequency of a near-synonym, and 

( )
j

i
NSZ ngram  denotes the normalized frequency 

of an n-gram, which is used to reduce the effect 
of high frequencies on measuring n-gram scores. 
All of the above frequencies are retrieved from 
the Web 1T 5-gram corpus.  

The n-gram score for a near-synonym to fill 
the gap is computed as  

1

1( , ) ( ),
=

= ∑ j

R
i

j NS
i

NGRAM NS s Z ngram
R

        (5) 

where ( , )jNGRAM NS s  denotes the n-gram 
score of a near-synonym, which is computed by 
averaging the normalized frequencies of all the 
n-grams containing the near-synonym, and R is 
the total number of n-grams containing the near-
synonym. Again, the near-synonym with the 
highest score is the proposed answer. We herein 
use the 4-gram frequencies to compute n-gram 
scores as Yu et al. (2007) reported that the use of 
4-grams achieved higher performance than the 
use of bigrams and trigrams.  

3 Discriminative Training 

3.1 Classifier 

The supervised classification technique can also 
be applied to for near-synonym substitution. 
Each near-synonym in a set corresponds to a 
class. The classifiers for each near-synonym set 
are built from the labeled training data, i.e., a 
collection of sentences containing the near-
synonyms. Such training data is easy to obtain 
since it requires no human annotation. The train-
ing data used herein is collected by extracting 
the 5-grams containing the near-synonyms from 
the Web 1T 5-gram corpus. The features used 
for training are the words occurring in the con-
text of the near-synonyms in the 5-grams.  
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For each near-synonym set, an F K×  feature-
class matrix, denoted as M, is created for classi-
fication. The rows represent the F distinct words 
(features) and the columns represent the K near-
synonyms (classes) in the same set. Each entry 
in the matrix, mij, represents a weight of word i 
respect to near-synonym j, which is computed as 
the number of times word i appears in the con-
texts of near-synonym j divided by the total 
number of context words of near-synonym j. 
This frequency-based weight can then be trans-
formed into a probabilistic form, i.e., divided by 
the sum of the weights of word i respect to all 
near-synonyms. Each test sentence is also trans-
formed into an F-dimensional feature vector. Let 

1[ ,..., ,..., ]= i Fx x x x  denote the feature vector of 
an input sentence. The classification is per-
formed by computing the cosine similarity be-
tween x and the column vectors (near-synonyms) 
in the matrix, defined as 

1

2 2
1 1

 arg max cos( , )

            arg max                             (6)

        arg max ,

j
j j

j

j j

F
i iji

F Fj
i iji i

NS x m

x m
x m

x m

x m

∧

=

= =

=

=

= ∑
∑ ∑

i  

where jm  is the j-th column vector in the matrix 
M. The near-synonym with the highest cosine 
similarity score, ∧

j
NS , is the predicted class of 

the classifier. 

3.2 Minimum classification error criterion 

According to the decision rule of the classifier, a 
classification error will occur when the near-
synonym with the highest cosine score is not the 
correct class. Table 1 shows some examples, 
where Example 3 is an example of misclassifica-
tion. On the other hand, although Example 2 is a 
correct classification, it might be an ambiguous 
case to classifiers since the scores are close 
among classes. Therefore, if we can increase the 
separation of the correct class from its compet-
ing ones, then the classification performance can 
be improved accordingly. This can be accom-
plished by adjusting the feature weights of the 
matrix M that have direct influence on the com-
putation of cosine scores. The discriminative 
training performs the adjustment in the training 
phase according to the minimum classification 
error criterion. The detailed steps are as follows. 

Given an input vector x, the classifier com-
putes the cosine scores between x and each class 
using (6). The discriminant function for a class 
can thus be defined as the cosine measure; that is, 

( , ) cos( , ).=j jg x M x m             (7) 

where j denotes a class in K. Since the correct 
class of each input vector is known in the train-
ing phase, we can determine whether or not the 
input vector is misclassified by comparing the 
discriminant function (cosine score) of the cor-
rect class against its competing classes. In the 
case of misclassification, the cosine score of the 
correct class will be smaller than the competing 
cosine scores. Let k be the correct class of x, the 
misclassification function can be defined as  

 ( , )  ( , )  ( , ),k k kd x M g x M G x M= − +            (8) 

where ( , )kg x M  is the discriminant function for 
the correct class k, and ( , )kG x M  is the anti-
discriminant function that represents the other 

1K −  competing classes, defined as 
1

1( , ) ( , ) ,
1k j

j k

G x M g x M
K

η
η

≠

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

∑              (9) 

When 1η = , the anti-discriminant function 
( , )kG x M  is the average of all the competing 

cosine scores. With the increase of η , 
( , )kG x M is gradually dominated by the biggest 

 Example 
 1 2 3 

1 1( , ) cos( , )=g x M x m  0.9* 0.6* 0.8 

2 2( , ) cos( , )=g x M x m  0.3 0.5 0.3* 

3 3( , ) cos( , )=g x M x m  0.2 0.4 0.1 
max ( , )≠ =j k ig x M  0.3 0.5 0.8 

( , ) =kd x M  -0.6 -0.1 0.5 
( , ) =kl x M  

                (γ=5) 
0.047 0.378 0.924

Table 1. Examples of correct classification 
and misclassification. * denotes the scores of the 
correct class.  
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competing class. In the extreme case, i.e., 
η →∞ , the anti-discriminant function becomes 

( , ) max  ( , ).k jj k
G x M g x M

≠
=          (10) 

The misclassification function in (8) can thus be 
rewritten as 

( , )  ( , ) max  ( , ),k k jj k
d x M g x M g x M

≠
= − +    (11) 

In this case, the classification error is determined 
by comparing the discriminant function of the 
correct class against that of the biggest compet-
ing class. Obviously, ( , ) 0kd x M >  implies a 
classification error. For instance, in Example 3, 
the discriminant function for the correct class is 

2 ( , ) 0.3g x M = , and that of the biggest compet-
ing class is 1 3max( ( , ), ( , )) 0.8=g x M g x M , thus 
the classification error is ( , ) 0.5=kd x M . On the 
other hand, the classification error will be a 
negative value for correct classifications, as 
shown in Example 1 and 2. 

Intuitively, a greater classification error also 
results in a greater loss. We herein use the sig-
moid function as the class loss function; that is, 

1( , ) ( ) ,
1 exp kk k dl x M l d γ−= =
+

         (12) 

where γ is a constant that controls the slope of 
the sigmoid function. The sigmoid function 
maps the values of classification error within the 
range of 0 to 1. For correct classifications, a 
greater separation of the correct class from the 
biggest competing class leads to a greater nega-
tive value of dk, i.e., a smaller classification error, 
resulting in a smaller loss tends asymptotically 
to 0 (Example 1), whereas a moderate loss is 
yielded if the separation was close (Example 2). 
For the cases of misclassification, a greater sepa-
ration leads to a greater positive value of dk, i.e., 
a greater classification error, resulting in a 
greater loss tends asymptotically to 1 (Example 
3). The overall loss of the entire training set can 
then be estimated as 

1

1( ) ( , ),
= ∈

= ∑∑
k

K

k
k x C

L M l x M
Q

                      (13) 

where Ck denotes the set of training vectors of 
class k, and Q is the total number of vectors in 
the training set. The goal now is to minimize the 
loss. According to the above discussions on the 

three examples, to minimize the loss is to mini-
mize the classification error, and to improve the 
separation of the correct class against its compet-
ing classes. This can be accomplished by adjust-
ing the feature weights of the matrix M to distin-
guish positive and negative features for each 
class. We herein adopt a gradient descent 
method such as the generalized probabilistic de-
scent (GPD) algorithm (Katagiri et al., 1998) to 
update the matrix M. The detailed steps are as 
follows. 

Let the feature weights of the matrix M be the 
parameter set to be adjusted. The adjustment is 
performed iteratively according to the following 
update formula. 

( 1) ( ) ( ) ( )( , ),ε+ = − ∇t t t t
t kM M l x M         (14) 

where t denotes the t-th iteration, ε t  is an ad-
justment step of a small positive real number, 
and ( ) ( )( , )∇ t t

kl x M is the gradient of the loss 
function, which is computed by the following 
two parts 

( ) ( )
( ) ( ) ( , )( , ) ,

t t
t t k k

k
k ij

l d x Ml x M
d m
∂ ∂

∇ =
∂ ∂

         (15) 

where  

( )(1 ( )),k
k k k k

k

l l d l d
d

γ∂
= −

∂
         (16) 

and from (7), (8), and (9),  

( ) ( )
( ) ( ) 1

( )

,                                           if  
( , ) ( , ) ( , ) ,

  ,  if  
( , )

η

η

−

≠

− =⎧
⎪∂

= ⎨ ≠∂ ⎪
⎩ ∑

i
t t

t tk
k j

i tij
jj k

x j k
d x M G x M g x M

x j km
g x M

                                                                         (17) 

where xi is an element of the input vector x. By 
replacing ( , )k t tl x M∇  in (14) with the two parts 
in (15), at each iteration each feature weight mij 
in M is adjusted by 
  

( )

( 1)
( ) ( ) 1

( )
( )

,                                          if  

.( , ) ( , )
, if  

( , )

η

η

ε

ε

+
−

≠

∂⎧ + =⎪ ∂⎪= ⎨ ∂⎪ − ≠
⎪ ∂⎩ ∑

t k
ij t i

kt
t tij

k jt k
ij t i t

k jj k

lm x j k
d

m G x M g x Mlm x j k
d g x M

 

                         (18) 
The weight xi represents whether or not a dimen-
sion word occurs in an input sentence. A zero 
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weight indicates that the dimension word does 
not occur in the input sentence, thus the corre-
sponding dimension of each column vector will 
not be adjusted. On the contrary, the correspond-
ing dimension of the column vector of the cor-
rect class ( j k= ) is adjusted by adding a value, 
while those of the competing classes ( j k≠ ) are 
adjusted by subtracting a value from them. After 
a sequence of adjustments over the training set, 
the positive and negative features can be distin-
guished by adjusting their weights that result in a 
greater positive or negative value for each of 
them. The separation of the correct class against 
its competing ones can thus be increased.  

The weight adjustment in (18) is in proportion 
to the adjustment step ε t  and the slope of the 
sigmoid function k kl d∂ ∂ . The adjustment step 
ε t  can be determined empirically. As (16) shows, 
the slope k kl d∂ ∂  converges asymptotically to 
zero as the classification error dk approaches to a 
very large (or small) value. This leads to a small 
weight adjustment. For instance, the weight ad-
justment in Example 1 is small due to a small 
value of dk, or, say, due to a large separation be-
tween the correct class and its competing ones. 
This is reasonable because classifiers often per-
form well in such cases. Similarly, the weight 
adjustment in Example 3 (misclassification) is 
also small due to a large value of dk. A greater 
adjustment is not employed because such a large 
separation is difficult to be reduced significantly. 
Additionally, over-adjusting some features may 
introduce negative effects on other useful fea-
tures in the matrix. Therefore, discriminative 
training is more effective on the cases with a 
moderate value of dk, like Example 2. Such cases 
usually fall within the decision boundary and 
tend to be confusing to classifiers. Hence, im-
proving the separation on such cases helps sig-
nificantly improve the classification performance. 

4 Experimental Results 

4.1 Experiment setup 

1) Data: The near-synonym sets used for ex-
periments included the seven sets (Exp1) and the 
eleven sets (Exp2) used in the previous studies 
(Edmonds, 1997; Inkpen, 2007; Gardiner and 
Dras, 2007), as shown in Table 2. The Web 1T 
5-gram corpus was used to build classifiers, 

where the corpus was randomly split into a train-
ing set, a development set, and a test set with an 
8:1:1 ratio. For efficiency consideration, we ran-
domly sampled up to 100 5-grams from the test 
set for each near-synonym. This sampling pro-
cedure was repeated five times for evaluation of 
the classifiers. 
2) Classifiers: The classifiers were imple-
mented using PMI, n-grams, and discriminative 
training (DT) methods, respectively.  

PMI: Given a near-synonym set and a test 5-
gram with a gap, the PMI scores for each near-
synonym were calculated using (3), where the 
size of the context window k was set to 2. The 
frequency counts between each near-synonym 
and its context words were retrieved from the 
training set. 

NGRAM: For each test 5-gram with a gap, all 
possible 4-grams containing the gap were first 
extracted (excluding punctuation marks). The 
averaged 4-gram scores for each near-synonym 
were then calculated using (5). Again, the fre-
quency counts of the 4-grams were retrieved 
from the training set. 

DT: For each near-synonym set, the matrix M 
was built from the training set. Each 5-gram in 
the development set was taken as input to itera-
tively compute the cosine score, loss, classifica-
tion error, respectively, and finally to adjust the 
feature weights of M. The parameters of DT in-
cluded η  for the anti-discriminative function, γ 

0 20 40 60 80 100
Iteration

0.68

0.7

0.72

0.74

0.76

Ac
cu

ra
cy

Test set
Development set

Figure 2. The change of classification accuracy 
during discriminative training.  
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for the sigmoid function, and tε  for the adjust-
ment step. The settings, 25η = , 35γ = , and 

310ε −=t , were determined by performing DT 
for several iterations through the training set. 
These setting were used for the following ex-
periments. 
3) Evaluation metric: The answers proposed 
by each classifier are the near-synonyms with 
the highest score. The correct answers are the 
near-synonyms originally in the gap of the test 5-
grams. The performance is measure by the accu-
racy, which is defined as the number of correct 
answers made by each classifier, divided by the 
total number of test 5-grams. 

In the following sections, we first demonstrate 
the effect of DT on classification performance, 
followed by the comparison of the classifiers. 

4.2 Evaluation on discriminative training 

This experiment is to investigate the perform-
ance change during discriminative training. Fig-
ure 2 shows the accuracy at the first 100 itera-
tions for both development set and test set, with 
the 8th set in Exp2 as an example. The accuracy 
increased rapidly in the first 20 iterations, and 
stabilized after the 40th iteration. The discrimi-
native training is stopped until the accuracy has 
not been changed over 30 iterations or the 300th 
iteration has been reached. 

Accuracy (%) No. Near-synonym set No. of
cases NGRAM PMI COS DT 

1. difficult, hard, tough 300 58.60 61.67 60.13 63.13 
2. error, mistake, oversight 300 68.47 78.33 77.20 79.20 
3. job, task, duty 300 68.93 70.40 74.00 75.67 
4. responsibility, burden, obligation, commitment 400 69.80 66.95 68.75 69.55 
5. material, stuff, substance 300 70.20 67.93 71.07 75.13 
6. give, provide, offer 300 58.87 66.47 64.13 68.27 
7. settle, resolve 200 69.30 68.10 77.10 84.10 

Exp1 2,100 66.33 68.50 69.94 72.89 

1. benefit, advantage, favor, gain, profit 500 71.44 69.88 69.44 71.36 
2. low, gush, pour, run, spout, spurt, squirt, stream 800 65.45 65.00 68.68 71.08 
3. deficient, inadequate, poor, unsatisfactory 400 65.65 69.40 70.35 74.35 

4. afraid, aghast, alarmed, anxious, apprehensive, 
fearful, frightened, scared, terror-stricken* 789 49.84 44.74 47.00 49.33 

5. disapproval, animadversion*, aspersion*, blame, 
criticism, reprehension* 300 72.80 79.47 80.00 82.53 

6. mistake, blooper, blunder, boner, contretemps*,  
error, faux pas*, goof, slip, solecism* 618 62.27 59.61 68.41 71.65 

7. alcoholic, boozer*, drunk, drunkard, lush, sot 433 64.90 80.65 77.88 84.34 
8. leave, abandon, desert, forsake 400 65.85 66.05 69.35 74.35 

9. opponent, adversary, antagonist, competitor, 
enemy, foe, rival 700 58.51 59.51 63.31 67.14 

10. thin, lean, scrawny, skinny, slender, slim, spare, 
svelte, willowy*, wiry 734 57.74 61.99 55.72 64.58 

11. lie, falsehood, fib, prevarication*,  
rationalization, untruth 425 57.55 63.58 69.46 74.21 

Exp2 6,099 61.69 63.32 65.15 69.26 

Table 2. Accuracy of classifiers on Exp1 (7 sets) and Exp2 (11 sets). The words marked with * are 
excluded from the experiments because their 5-grams are very rare in the corpus. 
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4.3 Comparative results 

Table 2 shows the comparative results of the 
classification accuracy for the 18 near-synonym 
sets (Exp1 + Exp2). The accuracies for each 
near-synonym set were the average accuracies of 
the five randomly sampled test sets. The cosine 
measure without discrimination training (COS) 
was also considered for comparison. The results 
show that NGRAM performed worst among the 
four classifiers. The major reason is that not all 
4-grams of the test examples can be found in the 
corpus. Instead of contiguous word associations 
used by NGRAM, PMI considers the words in 
the contexts independently to select the best 
synonyms. The results show that PMI achieved 
better performance than NGRAM. The two su-
pervised methods, COS and DT, outperformed 
the two unsupervised methods, NGRAM and 
PMI. As indicated in the bold numbers, using the 
supervised method alone (without DT), COS 
yielded higher average accuracy by 5% and 2% 
over NGRAM and PMI, respectively, on Exp1, 
and by 6% and 3%, respectively, on Exp2. When 
DT was employed, the average accuracy was 
further improved by 4% and 6% on Exp1 and 
Exp2, respectively, compared with COS. 

The use of DT can improve the classification 
accuracy mainly because it can adjust the feature 
weights iteratively to improve the separation be-
tween the correct class and its competing ones, 
which helps tackle the ambiguous test examples 
that fall within the decision boundary. Table 3 
presents several positive and negative features 
for the near-synonym set {mistake, error, over-
sight}. The feature weights were adjusted ac-

cording to their contributions to discriminating 
among the near-synonyms in the set. For in-
stance, the features “made” and “biggest” both 
received a positive value for the class “mistake”, 
and a negative value for the competing classes 
“error” and “oversight”. These positive and 
negative weights help distinguish useful features 
from noisy ones for classifier training. On the 
other hand, if the feature weights were evenly 
distributed among the classes, these features 
would not be unlikely to contribute to the classi-
fication performance.  

4.4 Accuracy of Rank 1 and Rank 2 

The accuracy presented in Table 2 was com-
puted based on the classification results at Rank 
1, i.e., a test sample was considered correctly 
classified only if the near-synonym with the 
highest score was the word originally in the gap 
of the test sample. Similarly, the accuracy at 
Rank 2 can be computed by considering the top 
two near-synonyms proposed by each classifier. 
That is, if either the near-synonym with the 
highest or the second highest score was the cor-
rect answer, the test sample was considered cor-
rectly classified. Table 4 shows the accuracy of 
Rank 1 and Rank 2 for each classifier. The re-
sults show that the improvement of Rank 1 accu-
racy on Exp1 was about 20 to 30 percentage 
points, and was 25.76 in average. For Exp2, the 
average improvement was 19.80 percentage 
points 

Near-synonym set 
Features 

mistake error oversight

made 0.076 -0.004 -0.005 

biggest 0.074 -0.001 -0.004 

message -0.004 0.039 -0.010 

internal 0.001 0.026 -0.001 

supervision -0.001 -0.006 0.031 

audit -0.002 -0.003 0.028 

Table 3. Example of feature weights after dis-
criminative training.  

Exp1 Rank 1 Rank 2 Diff. 

NGRAM 66.33% 79.35% +19.63% 

PMI 68.50% 88.99% +29.91% 

COS 69.94% 89.93% +28.58% 

DT 72.89% 91.06% +24.93% 

Exp2 Rank 1 Rank 2 Diff. 

NGRAM 61.69% 68.48% +11.01% 

PMI 63.32% 79.11% +24.94% 

COS 65.15% 80.52% +23.59% 

DT 69.26% 82.86% +19.64% 

Table 4. Accuracy of Rank 1 and Rank 2 for 
each classifier.  
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5 Conclusion  

This work has presented the use of discrimina-
tive training for near-synonym substitution. The 
discriminative training can improve classifica-
tion performance by iteratively re-weighting the 
positive and negative features for each class. 
This helps improve the separation of the correct 
class against its competing ones, making classi-
fiers more effective on ambiguous cases close to 
the decision boundary. Experimental results 
show that the supervised discriminative training 
technique achieves higher accuracy than the two 
unsupervised methods, the PMI-based and n-
gram-based methods. The availability of a large 
labeled training set also encourages the use of 
the proposed supervised method.  

Future work will investigate on the use of 
multiple features for discriminating among near-
synonyms. For instance, the predicate-argument 
structure, which can capture long-distance in-
formation, will be combined with currently used 
local contextual features to boost the classifica-
tion performance. More experiments will also be 
conducted to evaluate classifiers’ ability to rank 
multiple answers. 
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