
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 1254–1262,
Beijing, August 2010

Discriminative Training for Near-Synonym Substitution

Liang-Chih Yu1, Hsiu-Min Shih2, Yu-Ling Lai2, Jui-Feng Yeh3 and Chung-Hsien Wu4

1Department of Information Management, Yuan Ze University

2Department of Mathematics, National Chung Cheng University

3Department of CSIE, National Chia-Yi University
4Department of CSIE, National Cheng Kung University

Contact: lcyu@saturn.yzu.edu.tw

Abstract

Near-synonyms are useful knowledge re-
sources for many natural language applica-
tions such as query expansion for information
retrieval (IR) and paraphrasing for text gen-
eration. However, near-synonyms are not nec-
essarily interchangeable in contexts due to
their specific usage and syntactic constraints.
Accordingly, it is worth to develop algorithms
to verify whether near-synonyms do match the
given contexts. In this paper, we consider the
near-synonym substitution task as a classifica-
tion task, where a classifier is trained for each
near-synonym set to classify test examples
into one of the near-synonyms in the set. We
also propose the use of discriminative training
to improve classifiers by distinguishing posi-
tive and negative features for each near-
synonym. Experimental results show that the
proposed method achieves higher accuracy
than both pointwise mutual information (PMI)
and n-gram-based methods that have been
used in previous studies.

1 Introduction

Near-synonym sets represent groups of words
with similar meaning, which are useful knowl-
edge resources for many natural language appli-
cations. For instance, they can be used for query
expansion in information retrieval (IR) (Moldo-
van and Mihalcea, 2000; Bhogal et al., 2007),
where a query term can be expanded by its near-
synonyms to improve the recall rate. They can
also be used in an intelligent thesaurus that can
automatically suggest alternative words to avoid
repeating the same word in the composing of
text when there are suitable alternatives in its

synonym set (Inkpen and Hirst, 2006; Inkpen,
2007). These near-synonym sets can be derived
from manually constructed dictionaries such as
WordNet (called synsets) (Fellbaum, 1998), Eu-
roWordNet (Rodríguez et al., 1998), or clusters
derived using statistical approaches (Lin, 1998).

Although the words in a near-synonym set
have similar meaning, they are not necessarily
interchangeable in practical use due to their spe-
cific usage and collocational constraints. Pearce
(2001) presented an example of collocational
constraints for the context “ coffee”. In the
given near-synonym set {strong, powerful}, the
word “strong” is more suitable than “powerful”
to fill the gap, since “powerful coffee” is an anti-
collocation. Inkpen (2007) also presented several
examples of collocations (e.g. ghastly mistake)
and anti-collocations (e.g. ghastly error). Yu et
al. (2007) described an example of the context
mismatch problem for the context “ under
the bay” and the near-synonym set {bridge,
overpass, viaduct, tunnel} that represents the
meaning of a physical structure that connects
separate places by traversing an obstacle. The
original word (target word) in the given context
is “tunnel”, and cannot be substituted by the
other words in the same set since all the substitu-
tions are semantically implausible. Accordingly,
it is worth to develop algorithms to verify
whether near-synonyms do match the given con-
texts. Applications can benefit from this ability
to provide more effective services. For instance,
a writing support system can assist users to se-
lect an alternative word that best fits a given
context from a list of near-synonyms.

In measuring the substitutability of words, the
co-occurrence information between a target word

1254

(the gap) and its context words is commonly
used in statistical approaches. Edmonds (1997)
built a lexical co-occurrence network from 1989
Wall Street Journal to determine the near-
synonym that is most typical or expected in a
given context. Inkpen (2007) used the pointwise
mutual information (PMI) formula to select the
best near-synonym that can fill the gap in a
given context. The PMI scores for each candi-
date near-synonym are computed using a larger
web corpus, the Waterloo terabyte corpus, which
can alleviate the data sparseness problem en-
countered in Edmonds’ approach. Following
Inkpen’s approach, Gardiner and Dras (2007)
also used the PMI formula with a different cor-
pus (the Web 1T 5-gram corpus) to explore
whether near-synonyms differ in attitude.

Yu et al. (2007) presented a method to com-
pute the substitution scores for each near-
synonym based on n-gram frequencies obtained
by querying Google. A statistical test is then ap-
plied to determine whether or not a target word
can be substituted by its near-synonyms. The
dataset used in their experiments are derived
from the OntoNotes copus (Hovy et al., 2006;
Pradhan et al., 2007), where each near-synonym
set corresponds to a sense pool in OntoNotes.
Another direction to the task of near-synonym
substitution is to identify the senses of a target
word and its near-synonyms using word sense
disambiguation (WSD), comparing whether they
were of the same sense (McCarthy, 2002; Dagan
et al., 2006). Dagan et al. (2006) described that
the use of WSD is an indirect approach since it
requires the intermediate sense identification
step, and thus presented a sense matching tech-
nique to address the task directly.

In this paper, we consider the near-synonym
substitution task as a classification task, where a
classifier is trained for each near-synonym set to
classify test examples into one of the near-
synonyms in the set. However, near-synonyms
share more common context words (features)
than semantically dissimilar words in nature.
Such similar contexts may decrease classifiers’
ability to discriminate among near-synonyms.
Therefore, we propose the use of a supervised
discriminative training technique (Ohler et al.,
1999; Kuo and Lee, 2003; Zhou and He, 2009)
to improve classifiers by distinguishing positive
and negative features for each near-synonym. To

our best knowledge, this is the first study that
uses discriminative training for near-synonym or
lexical substitution. The basic idea of discrimi-
native training herein is to adjust feature weights
according to the minimum classification error
(MCE) criterion. The features that contribute to
discriminating among near-synonyms will re-
ceive a greater positive weight, whereas the
noisy features will be penalized and might re-
ceive a negative weight. This re-weighting
scheme helps increase the separation of the cor-
rect class against its competing classes, thus im-
proves the classification performance.

The proposed supervised discriminative train-
ing is compared with two unsupervised methods,
the PMI-based (Inkpen, 2007) and n-gram-based
(Yu et al., 2007) methods. The goal of the
evaluation is described as follows. Given a near-
synonym set and a sentence with one of the near-
synonyms in it, the near-synonym is deleted to
form a gap in this sentence. Figure 1 shows an
example. Each method is then applied to predict
an answer (best near-synonym) that can fill the
gap. The possible candidates are all the near-
synonyms (including the original word) in the
given set. Ideally, the correct answers should be
provided by human experts. However, such data
is usually unavailable, especially for a large set
of test examples. Therefore, we follow Inkpen’s
experiments to consider the original word as the
correct answer. The proposed methods can then
be evaluated by examining whether they can re-
store the original word by filling the gap with the
best near-synonym.

The rest of this work is organized as follows.
Section 2 describes the PMI and n-gram-based
methods for near-synonym substitution. Section
3 presents the discriminative training technique.
Section 4 summarizes comparative results. Con-
clusions are finally drawn in Section 5.

Sentence: This will make the message
easier to interpret.

Original word: error

Near-synonym set: {error, mistake, oversight}

Figure 1. Example of a near-synonym set and a
sentence to be evaluated.

1255

2 Unsupervised Methods

2.1 PMI-based method

The mutual information can measure the co-
occurrence strength between a near-synonym
and the words in a given context. A higher mu-
tual information score indicates that the near-
synonym fits well in the given context, thus is
more likely to be the correct answer. The point-
wise mutual information (Church and Hanks,
1991) between two words x and y is defined as

2
(,)(,) log ,

() ()
P x yPMI x y

P x P y
= (1)

where (,) (,)P x y C x y N= denotes the prob-
ability that x and y co-occur; (,)C x y is the
number of times x and y co-occur in the corpus,
and N is the total number of words in the corpus.
Similarly, () ()P x C x N= , where C(x) is the
number of times x occurs in the corpus, and

() ()P y C y N= , where C(y) is the number of
times y occurs in the corpus. Therefore, (1) can
be re-written as

2
(,)(,) log .
() ()

C x y NPMI x y
C x C y

⋅
=

⋅
 (2)

Inkpen (2007) computed the PMI scores for each
near-synonym using the Waterloo terabyte cor-
pus and a context window of size 2k (k=2).
Given a sentence s with a gap,

1 1 2...k k ks w w w w+= , the PMI score for
a near-synonym NSi to fill the gap is defined as

1

2

1

(,) (,)

 (,).
=

= +

= +∑
∑

k
j j ii

k
j ii k

PMI NS s PMI NS w

PMI NS w
 (3)

The near-synonym with the highest score is con-
sidered as the answer. In this paper, we use the
Web 1T 5-gram corpus to compute PMI scores,
the same as in (Gardiner and Dras, 2007). The
frequency counts C(‧) are retrieved from this
corpus in the same manner within the 5-gram
boundary.

2.2 N-gram-based method

The n-grams can capture contiguous word asso-
ciations in given contexts. Given a sentence with
a gap, the n-gram scores for each near-synonym

are computed as follows. First, all possible n-
grams containing the gap are extracted from the
sentence. Each near-synonym then fills the gap
to compute a normalized frequency according to

()log () 1
() ,

log ()
j

j

i
NSi

NS
j

C ngram
Z ngram

C NS

+
= (4)

where ()
j

i
NSC ngram denotes the frequency of an

n-gram containing a near-synonym, ()jC NS
denotes the frequency of a near-synonym, and

()
j

i
NSZ ngram denotes the normalized frequency

of an n-gram, which is used to reduce the effect
of high frequencies on measuring n-gram scores.
All of the above frequencies are retrieved from
the Web 1T 5-gram corpus.

The n-gram score for a near-synonym to fill
the gap is computed as

1

1(,) (),
=

= ∑ j

R
i

j NS
i

NGRAM NS s Z ngram
R

 (5)

where (,)jNGRAM NS s denotes the n-gram
score of a near-synonym, which is computed by
averaging the normalized frequencies of all the
n-grams containing the near-synonym, and R is
the total number of n-grams containing the near-
synonym. Again, the near-synonym with the
highest score is the proposed answer. We herein
use the 4-gram frequencies to compute n-gram
scores as Yu et al. (2007) reported that the use of
4-grams achieved higher performance than the
use of bigrams and trigrams.

3 Discriminative Training

3.1 Classifier

The supervised classification technique can also
be applied to for near-synonym substitution.
Each near-synonym in a set corresponds to a
class. The classifiers for each near-synonym set
are built from the labeled training data, i.e., a
collection of sentences containing the near-
synonyms. Such training data is easy to obtain
since it requires no human annotation. The train-
ing data used herein is collected by extracting
the 5-grams containing the near-synonyms from
the Web 1T 5-gram corpus. The features used
for training are the words occurring in the con-
text of the near-synonyms in the 5-grams.

1256

For each near-synonym set, an F K× feature-
class matrix, denoted as M, is created for classi-
fication. The rows represent the F distinct words
(features) and the columns represent the K near-
synonyms (classes) in the same set. Each entry
in the matrix, mij, represents a weight of word i
respect to near-synonym j, which is computed as
the number of times word i appears in the con-
texts of near-synonym j divided by the total
number of context words of near-synonym j.
This frequency-based weight can then be trans-
formed into a probabilistic form, i.e., divided by
the sum of the weights of word i respect to all
near-synonyms. Each test sentence is also trans-
formed into an F-dimensional feature vector. Let

1[,..., ,...,]= i Fx x x x denote the feature vector of
an input sentence. The classification is per-
formed by computing the cosine similarity be-
tween x and the column vectors (near-synonyms)
in the matrix, defined as

1

2 2
1 1

 arg max cos(,)

 arg max (6)

 arg max ,

j
j j

j

j j

F
i iji

F Fj
i iji i

NS x m

x m
x m

x m

x m

∧

=

= =

=

=

= ∑
∑ ∑

i

where jm is the j-th column vector in the matrix
M. The near-synonym with the highest cosine
similarity score, ∧

j
NS , is the predicted class of

the classifier.

3.2 Minimum classification error criterion

According to the decision rule of the classifier, a
classification error will occur when the near-
synonym with the highest cosine score is not the
correct class. Table 1 shows some examples,
where Example 3 is an example of misclassifica-
tion. On the other hand, although Example 2 is a
correct classification, it might be an ambiguous
case to classifiers since the scores are close
among classes. Therefore, if we can increase the
separation of the correct class from its compet-
ing ones, then the classification performance can
be improved accordingly. This can be accom-
plished by adjusting the feature weights of the
matrix M that have direct influence on the com-
putation of cosine scores. The discriminative
training performs the adjustment in the training
phase according to the minimum classification
error criterion. The detailed steps are as follows.

Given an input vector x, the classifier com-
putes the cosine scores between x and each class
using (6). The discriminant function for a class
can thus be defined as the cosine measure; that is,

(,) cos(,).=j jg x M x m (7)

where j denotes a class in K. Since the correct
class of each input vector is known in the train-
ing phase, we can determine whether or not the
input vector is misclassified by comparing the
discriminant function (cosine score) of the cor-
rect class against its competing classes. In the
case of misclassification, the cosine score of the
correct class will be smaller than the competing
cosine scores. Let k be the correct class of x, the
misclassification function can be defined as

 (,) (,) (,),k k kd x M g x M G x M= − + (8)

where (,)kg x M is the discriminant function for
the correct class k, and (,)kG x M is the anti-
discriminant function that represents the other

1K − competing classes, defined as
1

1(,) (,) ,
1k j

j k

G x M g x M
K

η
η

≠

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

∑ (9)

When 1η = , the anti-discriminant function
(,)kG x M is the average of all the competing

cosine scores. With the increase of η ,
(,)kG x M is gradually dominated by the biggest

 Example
 1 2 3

1 1(,) cos(,)=g x M x m 0.9* 0.6* 0.8

2 2(,) cos(,)=g x M x m 0.3 0.5 0.3*

3 3(,) cos(,)=g x M x m 0.2 0.4 0.1
max (,)≠ =j k ig x M 0.3 0.5 0.8

(,) =kd x M -0.6 -0.1 0.5
(,) =kl x M

 (γ=5)
0.047 0.378 0.924

Table 1. Examples of correct classification
and misclassification. * denotes the scores of the
correct class.

1257

competing class. In the extreme case, i.e.,
η →∞ , the anti-discriminant function becomes

(,) max (,).k jj k
G x M g x M

≠
= (10)

The misclassification function in (8) can thus be
rewritten as

(,) (,) max (,),k k jj k
d x M g x M g x M

≠
= − + (11)

In this case, the classification error is determined
by comparing the discriminant function of the
correct class against that of the biggest compet-
ing class. Obviously, (,) 0kd x M > implies a
classification error. For instance, in Example 3,
the discriminant function for the correct class is

2 (,) 0.3g x M = , and that of the biggest compet-
ing class is 1 3max((,), (,)) 0.8=g x M g x M , thus
the classification error is (,) 0.5=kd x M . On the
other hand, the classification error will be a
negative value for correct classifications, as
shown in Example 1 and 2.

Intuitively, a greater classification error also
results in a greater loss. We herein use the sig-
moid function as the class loss function; that is,

1(,) () ,
1 exp kk k dl x M l d γ−= =
+

 (12)

where γ is a constant that controls the slope of
the sigmoid function. The sigmoid function
maps the values of classification error within the
range of 0 to 1. For correct classifications, a
greater separation of the correct class from the
biggest competing class leads to a greater nega-
tive value of dk, i.e., a smaller classification error,
resulting in a smaller loss tends asymptotically
to 0 (Example 1), whereas a moderate loss is
yielded if the separation was close (Example 2).
For the cases of misclassification, a greater sepa-
ration leads to a greater positive value of dk, i.e.,
a greater classification error, resulting in a
greater loss tends asymptotically to 1 (Example
3). The overall loss of the entire training set can
then be estimated as

1

1() (,),
= ∈

= ∑∑
k

K

k
k x C

L M l x M
Q

 (13)

where Ck denotes the set of training vectors of
class k, and Q is the total number of vectors in
the training set. The goal now is to minimize the
loss. According to the above discussions on the

three examples, to minimize the loss is to mini-
mize the classification error, and to improve the
separation of the correct class against its compet-
ing classes. This can be accomplished by adjust-
ing the feature weights of the matrix M to distin-
guish positive and negative features for each
class. We herein adopt a gradient descent
method such as the generalized probabilistic de-
scent (GPD) algorithm (Katagiri et al., 1998) to
update the matrix M. The detailed steps are as
follows.

Let the feature weights of the matrix M be the
parameter set to be adjusted. The adjustment is
performed iteratively according to the following
update formula.

(1) () () ()(,),ε+ = − ∇t t t t
t kM M l x M (14)

where t denotes the t-th iteration, ε t is an ad-
justment step of a small positive real number,
and () ()(,)∇ t t

kl x M is the gradient of the loss
function, which is computed by the following
two parts

() ()
() () (,)(,) ,

t t
t t k k

k
k ij

l d x Ml x M
d m
∂ ∂

∇ =
∂ ∂

 (15)

where

()(1 ()),k
k k k k

k

l l d l d
d

γ∂
= −

∂
 (16)

and from (7), (8), and (9),

() ()
() () 1

()

, if
(,) (,) (,) ,

 , if
(,)

η

η

−

≠

− =⎧
⎪∂

= ⎨ ≠∂ ⎪
⎩ ∑

i
t t

t tk
k j

i tij
jj k

x j k
d x M G x M g x M

x j km
g x M

 (17)

where xi is an element of the input vector x. By
replacing (,)k t tl x M∇ in (14) with the two parts
in (15), at each iteration each feature weight mij
in M is adjusted by

()

(1)
() () 1

()
()

, if

.(,) (,)
, if

(,)

η

η

ε

ε

+
−

≠

∂⎧ + =⎪ ∂⎪= ⎨ ∂⎪ − ≠
⎪ ∂⎩ ∑

t k
ij t i

kt
t tij

k jt k
ij t i t

k jj k

lm x j k
d

m G x M g x Mlm x j k
d g x M

 (18)
The weight xi represents whether or not a dimen-
sion word occurs in an input sentence. A zero

1258

weight indicates that the dimension word does
not occur in the input sentence, thus the corre-
sponding dimension of each column vector will
not be adjusted. On the contrary, the correspond-
ing dimension of the column vector of the cor-
rect class (j k=) is adjusted by adding a value,
while those of the competing classes (j k≠) are
adjusted by subtracting a value from them. After
a sequence of adjustments over the training set,
the positive and negative features can be distin-
guished by adjusting their weights that result in a
greater positive or negative value for each of
them. The separation of the correct class against
its competing ones can thus be increased.

The weight adjustment in (18) is in proportion
to the adjustment step ε t and the slope of the
sigmoid function k kl d∂ ∂ . The adjustment step
ε t can be determined empirically. As (16) shows,
the slope k kl d∂ ∂ converges asymptotically to
zero as the classification error dk approaches to a
very large (or small) value. This leads to a small
weight adjustment. For instance, the weight ad-
justment in Example 1 is small due to a small
value of dk, or, say, due to a large separation be-
tween the correct class and its competing ones.
This is reasonable because classifiers often per-
form well in such cases. Similarly, the weight
adjustment in Example 3 (misclassification) is
also small due to a large value of dk. A greater
adjustment is not employed because such a large
separation is difficult to be reduced significantly.
Additionally, over-adjusting some features may
introduce negative effects on other useful fea-
tures in the matrix. Therefore, discriminative
training is more effective on the cases with a
moderate value of dk, like Example 2. Such cases
usually fall within the decision boundary and
tend to be confusing to classifiers. Hence, im-
proving the separation on such cases helps sig-
nificantly improve the classification performance.

4 Experimental Results

4.1 Experiment setup

1) Data: The near-synonym sets used for ex-
periments included the seven sets (Exp1) and the
eleven sets (Exp2) used in the previous studies
(Edmonds, 1997; Inkpen, 2007; Gardiner and
Dras, 2007), as shown in Table 2. The Web 1T
5-gram corpus was used to build classifiers,

where the corpus was randomly split into a train-
ing set, a development set, and a test set with an
8:1:1 ratio. For efficiency consideration, we ran-
domly sampled up to 100 5-grams from the test
set for each near-synonym. This sampling pro-
cedure was repeated five times for evaluation of
the classifiers.
2) Classifiers: The classifiers were imple-
mented using PMI, n-grams, and discriminative
training (DT) methods, respectively.

PMI: Given a near-synonym set and a test 5-
gram with a gap, the PMI scores for each near-
synonym were calculated using (3), where the
size of the context window k was set to 2. The
frequency counts between each near-synonym
and its context words were retrieved from the
training set.

NGRAM: For each test 5-gram with a gap, all
possible 4-grams containing the gap were first
extracted (excluding punctuation marks). The
averaged 4-gram scores for each near-synonym
were then calculated using (5). Again, the fre-
quency counts of the 4-grams were retrieved
from the training set.

DT: For each near-synonym set, the matrix M
was built from the training set. Each 5-gram in
the development set was taken as input to itera-
tively compute the cosine score, loss, classifica-
tion error, respectively, and finally to adjust the
feature weights of M. The parameters of DT in-
cluded η for the anti-discriminative function, γ

0 20 40 60 80 100
Iteration

0.68

0.7

0.72

0.74

0.76

Ac
cu

ra
cy

Test set
Development set

Figure 2. The change of classification accuracy
during discriminative training.

1259

for the sigmoid function, and tε for the adjust-
ment step. The settings, 25η = , 35γ = , and

310ε −=t , were determined by performing DT
for several iterations through the training set.
These setting were used for the following ex-
periments.
3) Evaluation metric: The answers proposed
by each classifier are the near-synonyms with
the highest score. The correct answers are the
near-synonyms originally in the gap of the test 5-
grams. The performance is measure by the accu-
racy, which is defined as the number of correct
answers made by each classifier, divided by the
total number of test 5-grams.

In the following sections, we first demonstrate
the effect of DT on classification performance,
followed by the comparison of the classifiers.

4.2 Evaluation on discriminative training

This experiment is to investigate the perform-
ance change during discriminative training. Fig-
ure 2 shows the accuracy at the first 100 itera-
tions for both development set and test set, with
the 8th set in Exp2 as an example. The accuracy
increased rapidly in the first 20 iterations, and
stabilized after the 40th iteration. The discrimi-
native training is stopped until the accuracy has
not been changed over 30 iterations or the 300th
iteration has been reached.

Accuracy (%) No. Near-synonym set No. of
cases NGRAM PMI COS DT

1. difficult, hard, tough 300 58.60 61.67 60.13 63.13
2. error, mistake, oversight 300 68.47 78.33 77.20 79.20
3. job, task, duty 300 68.93 70.40 74.00 75.67
4. responsibility, burden, obligation, commitment 400 69.80 66.95 68.75 69.55
5. material, stuff, substance 300 70.20 67.93 71.07 75.13
6. give, provide, offer 300 58.87 66.47 64.13 68.27
7. settle, resolve 200 69.30 68.10 77.10 84.10

Exp1 2,100 66.33 68.50 69.94 72.89

1. benefit, advantage, favor, gain, profit 500 71.44 69.88 69.44 71.36
2. low, gush, pour, run, spout, spurt, squirt, stream 800 65.45 65.00 68.68 71.08
3. deficient, inadequate, poor, unsatisfactory 400 65.65 69.40 70.35 74.35

4. afraid, aghast, alarmed, anxious, apprehensive,
fearful, frightened, scared, terror-stricken* 789 49.84 44.74 47.00 49.33

5. disapproval, animadversion*, aspersion*, blame,
criticism, reprehension* 300 72.80 79.47 80.00 82.53

6. mistake, blooper, blunder, boner, contretemps*,
error, faux pas*, goof, slip, solecism* 618 62.27 59.61 68.41 71.65

7. alcoholic, boozer*, drunk, drunkard, lush, sot 433 64.90 80.65 77.88 84.34
8. leave, abandon, desert, forsake 400 65.85 66.05 69.35 74.35

9. opponent, adversary, antagonist, competitor,
enemy, foe, rival 700 58.51 59.51 63.31 67.14

10. thin, lean, scrawny, skinny, slender, slim, spare,
svelte, willowy*, wiry 734 57.74 61.99 55.72 64.58

11. lie, falsehood, fib, prevarication*,
rationalization, untruth 425 57.55 63.58 69.46 74.21

Exp2 6,099 61.69 63.32 65.15 69.26

Table 2. Accuracy of classifiers on Exp1 (7 sets) and Exp2 (11 sets). The words marked with * are
excluded from the experiments because their 5-grams are very rare in the corpus.

1260

4.3 Comparative results

Table 2 shows the comparative results of the
classification accuracy for the 18 near-synonym
sets (Exp1 + Exp2). The accuracies for each
near-synonym set were the average accuracies of
the five randomly sampled test sets. The cosine
measure without discrimination training (COS)
was also considered for comparison. The results
show that NGRAM performed worst among the
four classifiers. The major reason is that not all
4-grams of the test examples can be found in the
corpus. Instead of contiguous word associations
used by NGRAM, PMI considers the words in
the contexts independently to select the best
synonyms. The results show that PMI achieved
better performance than NGRAM. The two su-
pervised methods, COS and DT, outperformed
the two unsupervised methods, NGRAM and
PMI. As indicated in the bold numbers, using the
supervised method alone (without DT), COS
yielded higher average accuracy by 5% and 2%
over NGRAM and PMI, respectively, on Exp1,
and by 6% and 3%, respectively, on Exp2. When
DT was employed, the average accuracy was
further improved by 4% and 6% on Exp1 and
Exp2, respectively, compared with COS.

The use of DT can improve the classification
accuracy mainly because it can adjust the feature
weights iteratively to improve the separation be-
tween the correct class and its competing ones,
which helps tackle the ambiguous test examples
that fall within the decision boundary. Table 3
presents several positive and negative features
for the near-synonym set {mistake, error, over-
sight}. The feature weights were adjusted ac-

cording to their contributions to discriminating
among the near-synonyms in the set. For in-
stance, the features “made” and “biggest” both
received a positive value for the class “mistake”,
and a negative value for the competing classes
“error” and “oversight”. These positive and
negative weights help distinguish useful features
from noisy ones for classifier training. On the
other hand, if the feature weights were evenly
distributed among the classes, these features
would not be unlikely to contribute to the classi-
fication performance.

4.4 Accuracy of Rank 1 and Rank 2

The accuracy presented in Table 2 was com-
puted based on the classification results at Rank
1, i.e., a test sample was considered correctly
classified only if the near-synonym with the
highest score was the word originally in the gap
of the test sample. Similarly, the accuracy at
Rank 2 can be computed by considering the top
two near-synonyms proposed by each classifier.
That is, if either the near-synonym with the
highest or the second highest score was the cor-
rect answer, the test sample was considered cor-
rectly classified. Table 4 shows the accuracy of
Rank 1 and Rank 2 for each classifier. The re-
sults show that the improvement of Rank 1 accu-
racy on Exp1 was about 20 to 30 percentage
points, and was 25.76 in average. For Exp2, the
average improvement was 19.80 percentage
points

Near-synonym set
Features

mistake error oversight

made 0.076 -0.004 -0.005

biggest 0.074 -0.001 -0.004

message -0.004 0.039 -0.010

internal 0.001 0.026 -0.001

supervision -0.001 -0.006 0.031

audit -0.002 -0.003 0.028

Table 3. Example of feature weights after dis-
criminative training.

Exp1 Rank 1 Rank 2 Diff.

NGRAM 66.33% 79.35% +19.63%

PMI 68.50% 88.99% +29.91%

COS 69.94% 89.93% +28.58%

DT 72.89% 91.06% +24.93%

Exp2 Rank 1 Rank 2 Diff.

NGRAM 61.69% 68.48% +11.01%

PMI 63.32% 79.11% +24.94%

COS 65.15% 80.52% +23.59%

DT 69.26% 82.86% +19.64%

Table 4. Accuracy of Rank 1 and Rank 2 for
each classifier.

1261

5 Conclusion

This work has presented the use of discrimina-
tive training for near-synonym substitution. The
discriminative training can improve classifica-
tion performance by iteratively re-weighting the
positive and negative features for each class.
This helps improve the separation of the correct
class against its competing ones, making classi-
fiers more effective on ambiguous cases close to
the decision boundary. Experimental results
show that the supervised discriminative training
technique achieves higher accuracy than the two
unsupervised methods, the PMI-based and n-
gram-based methods. The availability of a large
labeled training set also encourages the use of
the proposed supervised method.

Future work will investigate on the use of
multiple features for discriminating among near-
synonyms. For instance, the predicate-argument
structure, which can capture long-distance in-
formation, will be combined with currently used
local contextual features to boost the classifica-
tion performance. More experiments will also be
conducted to evaluate classifiers’ ability to rank
multiple answers.

References
J. Bhogal, A. Macfarlane, and P. Smith. 2007. A Re-

view of Ontology based Query Expansion. Infor-
mation Processing & Management, 43(4):866-886.

K. Church and P. Hanks. 1991. Word Association
Norms, Mutual Information and Lexicography.
Computational Linguistics, 16(1):22-29.

I. Dagan, O. Glickman, A. Gliozzo, E. Marmorshtein,
and C. Strapparava. 2006. Direct Word Sense
Matching for Lexical Substitution. In Proc. of
COLING/ACL-06, pages 449-456.

P. Edmonds. 1997. Choosing the Word Most Typical
in Context Using a Lexical Co-occurrence Net-
work. In Proc. of ACL-97, pages 507-509.

C. Fellbaum. 1998. WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, MA.

M. Gardiner and M. Dras. 2007. Exploring Ap-
proaches to Discriminating among Near-Synonyms,
In Proc. of the Australasian Technology Workshop,
pages 31-39.

E. H. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and
R. Weischedel. 2006. OntoNotes: The 90% Solu-
tion. In Proc. of HLT/NAACL-06, pages 57–60.

D. Inkpen. 2007. Near-Synonym Choice in an Intelli-
gent Thesaurus. In Proc. of NAACL/HLT-07, pages
356-363.

D. Inkpen and G. Hirst. 2006. Building and Using a
Lexical Knowledge-base of Near-Synonym Differ-
ences. Computational Linguistics, 32(2):1-39.

S. Katagiri, B. H. Juang, and C. H. Lee. 1998. Pattern
Recognition Using a Family of Design Algorithms
based upon the Generalized Probabilistic Descent
Method, Proc. of the IEEE, 86(11):2345-2373.

H. K. J. Kuo and C. H. Lee. 2003. Discriminative
Training of Natural Language Call Routers, IEEE
Trans. Speech and Audio Processing, 11(1):24-35.

D. Lin. 1998. Automatic Retrieval and Clustering of
Similar Words. In Proc. of ACL/COLING-98,
pages 768-774.

D. McCarthy. 2002. Lexical Substitution as a Task
for WSD Evaluation. In Proc. of the
SIGLEX/SENSEVAL Workshop on Word Sense
Disambiguation at ACL-02, pages 109-115.

D. Moldovan and R. Mihalcea. 2000. Using Wordnet
and Lexical Operators to Improve Internet
Searches. IEEE Internet Computing, 4(1):34-43.

U. Ohler, S. Harbeck, and H. Niemann. 1999. Dis-
criminative Training of Language Model Classifi-
ers, In Proc. of Eurospeech-99, pages 1607-1610.

D. Pearce. 2001. Synonymy in Collocation Extraction.
In Proc. of the Workshop on WordNet and Other
Lexical Resources at NAACL-01.

S. Pradhan, E. H. Hovy, M. Marcus, M. Palmer, L.
Ramshaw, and R. Weischedel. 2007. OntoNotes: A
Unified Relational Semantic Representation. In
Proc. of the First IEEE International Conference
on Semantic Computing (ICSC-07), pages 517-524.

H. Rodríguez, S. Climent, P. Vossen, L. Bloksma, W.
Peters, A. Alonge, F. Bertagna, and A. Roventint.
1998. The Top-Down Strategy for Building Eeu-
roWordNet: Vocabulary Coverage, Base Concepts
and Top Ontology, Computers and the Humanities,
32:117-159.

L. C. Yu, C. H. Wu, A. Philpot, and E. H. Hovy. 2007.
OntoNotes: Sense Pool Verification Using Google
N-gram and Statistical Tests, In Proc. of the On-
toLex Workshop at the 6th International Semantic
Web Conference (ISWC-07).

D. Zhou and Y. He. 2009. Discriminative Training of
the Hidden Vector State Model for Semantic Pars-
ing, IEEE Trans. Knowledge and Data Engineer-
ing, 21(1):66-77.

1262

