
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 1281–1289,
Beijing, August 2010

Forest-guided Supertagger Training

Yao-zhong Zhang † Takuya Matsuzaki †

† Department of Computer Science, University of Tokyo
‡ School of Computer Science, University of Manchester

§National Centre for Text Mining
{yaozhong.zhang, matuzaki, tsujii}@is.s.u-tokyo.ac.jp

Jun’ichi Tsujii†‡§

Abstract

Supertagging is an important technique
for deep syntactic analysis. A super-
tagger is usually trained independently
of the parser using a sequence labeling
method. This presents an inconsistent
training objective between the supertagger
and the parser. In this paper, we pro-
pose a forest-guided supertagger training
method to alleviate this problem by incor-
porating global grammar constraints into
the supertagging process using a CFG-
filter. It also provides an approach to
make the supertagger and the parser more
tightly integrated. The experiment shows
that using the forest-guided trained super-
tagger, the parser got an absolute 0.68%
improvement from baseline in F-score
for predicate-argument relation recogni-
tion accuracy and achieved a competi-
tive result of 89.31% with a faster pars-
ing speed, compared to a state-of-the-art
HPSG parser.

1 Introduction

Deep syntactic analysis by lexicalized grammar
parsing, which provides linguistic-rich informa-
tion for many NLP tasks, has recently received
more and more attention from the NLP commu-
nity. To use a deep parser in real large-scale ap-
plications, speed is an important issue to take into
consideration. Supertagging is one of the speed-
up technique widely used for lexicalized grammar
parsing. A supertagger is used to limit the number
of plausible lexical entries fed to the parser, this
can greatly reduce the search space for the parser.

Supertagging was first proposed for Lexicalized
Tree Adjoining Grammar (LTAG) (Bangalore and
Joshi, 1999), and then successfully applied to
Combinatory Categorial Grammar (CCG) (Clark,
2002) and Head-driven Phrase Structure Gram-
mar (HPSG) (Ninomiya et al., 2006). In addi-
tion, supertags can also be used for other NLP
tasks besides parsing, such as semantic role label-
ing (Chen and Rambow, 2003) and machine trans-
lation (Birch et al., 2007; Hassan et al., 2007) to
utilize syntactic information in the supertags.

In lexicalized grammar parsing, supertagging is
usually treated as a sequence labeling task inde-
pendently trained from the parser. Previous re-
search (Clark, 2002) showed that even a point-
wise classifier not considering context edge fea-
tures is effective when used as a supertagger. To
make up for the insufficient accuracy as a single-
tagger, more than one supertag prediction is re-
served and the parser takes the burden of resolving
the rest of the supertag ambiguities.

A non-trivial problem raised by the separate
training of the supertagger is that the prediction
score provided by the supertagger might not be
suitable for direct use in the parsing process, since
a separately trained supertagger that does not take
into account grammar constraints has a training
objective which is inconsistent with the parser.
Although the scores provided by the supertagger
can be ignored (e.g., in some CCG parsers), this
may also discard some useful information for ef-
fective beam search and accurate disambiguation.

Based on this observation, we assume that
considering global grammar constraints during
the supertagger training process would make the
supertagger and the parser more tightly integrated.

1281

In this paper, we propose an on-line forest-guided
training method for a supertagger to make the
training objective of a supertagger more closely
related to the parsing task. We implemented this
method on a large-scale HPSG grammar. We
used a CFG grammar to approximate the original
HPSG grammar in the supertagging stage and ap-
plied best-first search to select grammar-satisfying
supertag sequences for the parameter updating.
The experiments showed that the HPSG parser is
improved by considering structure constraints in
the supertagging training process. For the stan-
dard test set (Penn Treebank Section 23), we ac-
complished an absolute 0.68% improvement from
baseline in F-score for predicate-argument rela-
tion recognition and got a competitive result of
89.31% with a faster parsing speed, compared to
a state-of-the-art HPSG parser.

The remainder of the paper is organized as
follows: in section 2 we provide the necessary
background regarding HPSG parsing. In section
3, we introduce the on-line forest-guided super-
tagger training method. Section 4 shows the ex-
periment results and the related analysis. Section
5 compares the proposed approach with related
work and section 6 presents our conclusions and
future work.

2 Background

2.1 Statistical HPSG Parsing

HPSG (Pollard and Sag, 1994) is a lexicalist
grammar framework. In HPSG, a large number
of lexical entries are used to express word-specific
characteristics, while only a small number of rule
schemata are used to describe general construc-
tion rules. Typed feature structures named “signs”
are used to represent both lexical entries and
phrasal constituents. A classic efficient statisti-
cal HPSG parsing process is depicted in Figure 1.
Given a word and part-of-speech sequence (w, p)
as input, the first step (called “supertagging”) in
HPSG parsing is to assign possible lexical entries.
In practice, for each word, more than one super-
tag is reserved for the parser. Then, the parser
searches the given lexical entry space to construct
a HPSG tree using the rule schemata to com-
bine possible signs. Constituent-based methods

and transition-based methods can be used for tree
structure disambiguation. This parsing framework
using supertagging is also used in other lexical-
ized grammars, such as LTAG and CCG.

2.2 HPSG Supertagging

Like other lexicalized grammar, the lexical en-
tries defined in HPSG are referred to as “super-
tags”. For example, the word “like” is assigned
a lexical entry for transitive verbs in non-3rd per-
son present form, which indicates that the head
syntactic category of “like” is verb and it has
an NP subject and an NP complement. With
such fine-grained grammatical type distinctions,
the number of supertags is very large. Compared
to the 45 part-of-speech (POS) tags defined in the
PennTreebank, the HPSG grammar we used con-
tains 2,308 supertags. The large number and the
complexity of the supertags makes supertagging
harder than the POS tagging task.

Supertagging can be formulated as a sequence
labeling task. Here, we follow the definition of
Collins’ perceptron (Collins, 2002). The train-
ing objective of supertagging is to learn the map-
ping from a POS-tagged word sentence w =
(w1/p1, ..., wn/pn) to a sequence of supertags
s = (s1, ..., sn). We use function GEN(w)
to indicate all candidates of supertag sequences
given input w. Feature function Φ maps a sam-
ple (w, s) to a point in the feature space Rd. θ is
the vector of feature weights. Given an input w,
the most plausible supertag sequence is found by
the prediction function defined as follows:

F (w) = argmax
s∈GEN(w)

θ · Φ(w, s) (1)

2.3 CFG-filtering

CFG-filtering (Kiefer and Krieger, 2000) is a tech-
nique to find a superset of (packed) HPSG parse
trees that satisfy the constraints in a grammar. A
CFG that approximates the original HPSG gram-
mar is used for efficiently finding such trees with-
out doing full-fledged HPSG parsing that is com-
putationally demanding because the schema ap-
plication involves unification operations among
large feature structures (signs). The number of
possible signs is infinite in general and hence

1282

Figure 1: HPSG parsing for the sentence “They like coffee.”

some features (e.g., the number agreement fea-
ture) are ignored in the approximating CFG so that
the set of possible signs can be approximated by
a finite set of non-terminal symbols in the CFG.
By this construction, some illegal trees may be
included in the set of trees licensed by the ap-
proximating CFG, but none of the well-formed
trees (i.e., those satisfying all constraints in the
grammar) are excluded by the approximation. We
use the algorithm described by Kiefer and Krieger
(2000) to obtain the approximating CFG for the
original HPSG. The technical details regarding
the algorithm can be found in Kiefer and Krieger
(2000).

3 Forest-guided Training for
Supertagging

3.1 Motivation
In lexicalized grammar parsing, a parser aims to
find the most plausible syntactic structure for a
given sentence based on the supertagging results.
One efficient parsing approach is to use predic-
tion scores provided by the supertagger. Usu-
ally, the supertagger is trained separately from the
structure disambiguation in a later stage. This
pipeline parsing strategy poses a potential prob-
lem in that the training objective of a supertagger
can deviate from the final parser, if the global
grammar constraints are not considered. For ex-
ample, the supertag predictions for some words
can contribute to high supertagging accuracy, but
cause the parser to fail. Therefore, considering the
global grammar constraints in the supertagging
training stage can make the supertagger and the

Algorithm 1: Forest-guided supertagger training
Input: Training Sample (wi, si)i=1,...,N ,

Number of iterations T
1: θ ← (0, ..., 0), θsum ← (0, ..., 0)
2: for iterNum ← 1 to T do
3: for i ← 1 to N do
4: Generate supertag lattice using

the point-wise classifier with current θ
5: Select ŝi from the lattice

which can construct a tree
with largest sequence score

6: if(No ŝi satisfied grammar constraints)
ŝi ← arg maxs∈GEN(wi) θi · Φ(wi, si)

7: if ŝi "= si then
8: θi+1 ← θi + Φ(wi, si) − Φ(wi, ŝi)
9: θsum ← θsum + θi+1

Return: θsum/NT

parser more tightly related, which will contribute
towards the performance of the parser.

3.2 Training Algorithm
Based on the motivation above, we propose
a forest-guided supertagger training method to
make the supertagger more tightly integrated with
the parser. This method is based on the averaged
perceptron training algorithm. The training pro-
cess is given in Algorithm 1.

The most important difference of the proposed
algorithm compared to the traditional supertagger
training method is that the current best-scored
supertag sequence is searched only within the
space of the supertag sequences that are allowed
by the grammar. As for whether the grammar

1283

constraints are satisfied, we judge it by whether
a possible syntactic tree can be constructed using
the given supertag sequence. We do not require
the constructed syntactic tree to be identical to the
gold tree in the corpus. For this reason we call it
“forest-guided”.

In the forest-guided training of the supertagger,
an approximating CFG is used to filter out the
supertag sequences from which no well-formed
tree can be built. It is implemented as a best-first
CFG parser wherein the score of a constituent is
the score of the supertag (sub-)sequence on the
fringe of the constituent, which is calculated us-
ing the current value of the parameters. Note that
the best-first parser can find the best-scored super-
tag sequence very efficiently given proper scoring
for the candidate supertag set for each token; this
is actually the case in the course of training except
for the initial phase of the training, wherein the pa-
rameter values are not well-tuned. The efficiency
is due to the sparseness of the approximating CFG
(i.e., the production rule set includes only a tiny
fraction of the possible parent-children combina-
tions of symbols) and highest-scored supertags of-
ten have a well-formed tree on top of them.

As is clear from the above description, the use
of CFG-filter in the forest-guided training of the
supertagger is not essential but is only a subsidiary
technique to make the training faster. The im-
provement by the forest-guided training should
however depend on whether the CFG approxi-
mation is reasonably tight or not. Actually, we
managed to obtain a manageable size out of a
CFG grammar, which includes 80 thousand non-
terminal symbols and 10 million rules, by elimi-
nating only a small number of features (semantics,
case and number agreement, and fine distinctions
in nouns, adjectives and complementizers). We
thus believe that the approximation is fairly tight.

This training algorithm can also be explained
in a search-based learning framework (Hal Daumé
III and Daniel Marcu, 2005). In this framework,
the objective of learning is to optimize the θ for
the enqueue function to make the good hypothe-
ses rank high in the search queue. The rank score
r consists of two components: path score g and
heuristic score h. In the forest-guided training

method, r can be rewritten as follows:

r = g + h

= θ · Φ(x, ŷ) + [Tree(ŷ)] ∗ Penalty (2)

The heuristic part h checks whether the super-
tag candidate sequence satisfies the grammar con-
straints: if no CFG tree can be constructed, -∞
penalty is imposed to the candidate sequence in
the forest-guided training method.

4 Experiments

We mainly evaluated the proposed forest-guided
supertagger training method on HPSG parsing.
Supertagging accuracy1 using different training
methods was also investigated.

4.1 Corpus Description
The HPSG grammar used in the experiments is
Enju version 2.32. It is semi-automatically con-
verted from the WSJ portion of PennTreebank
(Miyao, 2006). The grammar consists of 2,308
supertags in total. Sections 02-21 were used to
train different supertagging models and the HPSG
parser. Section 22 and section 23 were used as
the development set and the test set respectively.
We evaluated the HPSG parser performance by la-
beled precision (LP) and labeled recall (LR) of
predicate-argument relations of the parser’s out-
put as in previous works (Miyao, 2005). All ex-
periments were conducted on an AMD Opteron
2.4GHz server.

Template Type Template
Word wi,wi−1,wi+1,

wi−1&wi, wi&wi+1

POS pi, pi−1, pi−2, pi+1,
pi+2, pi−1&pi, pi−2&pi−1,
pi−1&pi+1, pi&pi+1,
pi+1&pi+2

Word-POS pi−1&wi, pi&wi, pi+1&wi

Table 1: Feature templates used for supertagging
models.

1“UNK” supertags are ignored in evaluation as in previ-
ous works.

2http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html

1284

4.2 Baseline Models and Settings
We used a point-wise averaged perceptron (PW)
to train a baseline supertagger. Point-wise classi-
fiers have been reported to be very effective and
with competitive results for the supertagging task
(Clark, 2002; Zhang et al., 2009). The number of
training iterations was set to 5. The features used
in the supertaggers are described in Table 1. For
comparison, these features are identical to the fea-
tures used in the previous works (Matsuzaki et al.,
2007; Ninomiya et al., 2007). To make the train-
ing efficient, we set the default chart size limit for
the forest-guided supertagger training to be 20k
by tuning it on the development set.

We combined the supertagger trained under
forest-guidance with a supertagging-based HPSG
parser (Matsuzaki et al., 2007) and evaluated the
contribution of the improved supertagger train-
ing procedure for the final HPSG parsing by the
accuracy of the predicate-argument relations out-
put of the parser. The parser crucially depends
on the supertagger’s performance in that it out-
puts the first well-formed tree successfully con-
structed on the highest scored supertag sequence.
The highest-scored supertag sequences are enu-
merated one by one in descending order in re-
gards to their score. The enumeration is actu-
ally implemented as n-best parsing on the super-
tag candidates using an approximating CFG. The
HPSG tree construction on a supertag sequence is
done using a shift-reduce style parsing algorithm
equipped with a classifier-based action selection
mechanism.

The automatically assigned POS tags were
given by a maximum entropy tagger with roughly
97% accuracy.

4.3 Supertagging Results
Although we mainly focused on improving the fi-
nal HPSG parsing performance through the im-
proved supertagger training, it is also very inter-
esting to investigate the supertagger performance
using different training methods. To evaluate the
forest-guided training method for a supertagger,
we also need to incorporate structure constraints
in the test stage. To make fair comparisons,
for the averaged perceptron trained supertagger
we also add structure constraints in its testing.

Model Name Acc%
FT+CFG 92.77

auto-POS PW+CFG 92.47
PW 91.14
ME 91.45

FT+CFG 93.98
gold-POS PW+CFG 93.70

PW 92.48
ME 92.78

Table 2: Supertagging results in section 23. “FT”
represents the forest-guided trained supertagger.
“PW” is the baseline average perceptron trained
supertagger. “ME” is the supertagger trained by
using the maximum entropy method. “+CFG” in-
dicates the use of the CFG-filter for the super-
tagger results. The accuracy of automatically as-
signed POS tags in this section is 97.39%.

For simplicity, throughout this paper, we call the
forest-guided trained supertagger “FT” in short,
while the “PW” is used to represent the base-
line point-wise averaged perceptron supertagger.
“ME” is the re-implemented maximum entropy
supertagger described in Matsuzaki et al. (2007).

For the PW supertagger, the performance was
roughly 0.3% below the ME supertagger. Simi-
lar results were reported by Zhang et al. (2009),
which used a Bayes point machine to reduce the
gap between the averaged perceptron supertagger
and the maximum entropy supertagger. Although
we expected the ME supertagger using CFG-filter
to give better results than the PW supertagger, im-
plementing forest-guided supertagger training in
a maximum entropy framework is different and
more sophisticated than the current on-line train-
ing method. Considering that the performance of
the PW supertagger and the ME supertagger were
at a similar level, we chose the PW supertagger as
our baseline.

We used a CFG-filter to incorporate global
grammar constraints into both the training and
the testing phase. Compared to the PW super-
tagger, the PW+CFG supertagger incorporated
global grammar constraints only in the test phase,
while for the FT+CFG supertagger, the global
grammar constraints were incorporated both in

1285

!!!!!!!!!!!!!!!!!Training Method
Iter NUM 1 2 3 4 5 Total Time

FT 6684s 4189s 3524s 3285s 3086s ≈ 5.8h
PW 99s 116s 117s 117s 117s ≈ 10 min
ME / ≈ 3h

Table 3: Supertagger training time on section 02-21. “FT” and “PW” represent forest-guided training
and point-wise averaged perceptron training separately. “ME” is the point-wise maximum entropy
training reported in Matsuzaki et al. (2007).

the training and the testing stage. The super-
tagging accuracy for different models is shown
in Table 2. Firstly, incorporating grammar con-
straints only in the testing phase (PW+CFG) gave
an absolute 1.22% (gold POS) and 1.33% (auto
POS) increase in F-score compared to the PW
supertagger. Secondly, incorporating grammar
constraints into both the training and the testing
stage (FT+CFG) gave an additional 0.28% (gold
POS) and 0.3% (auto POS) improvement over the
PW+CFG supertagger with p-values 0.0018 (gold
POS) and 0.0016 (auto POS).

This also indicates that the supertagger and the
parser are closely related to each other. The orig-
inal motivation for supertagging is using simple
models to resolve lexical ambiguities, which can
efficiently reduce the search space of the parser.
A better supertagger can contribute to more ef-
ficient and more accurate lexicalized grammar
parsing. Actually, a supertagger can act as a
coarse parser for the whole parsing process as
well, as long as the coarse parser is efficient. Since
supertag disambiguation is highly constrained by
the grammar, incorporating grammar constraints
into supertagging (including training and testing)
by using the CFG-filter can further improve the
supertagging performance, as shown in Table 2.

As for the supertagger training time, incorpo-
rating grammar constraints inevitably increases
the training time. As shown in Table 3, the to-
tal training time of forest-guided training (default
settings, with chart size limited to 20k) was about
5.8 hours. For each iteration of the FT model,
we find that the training time gradually decreases
with each successive iteration. This hints that we
can do better model initialization to further reduce
the training time.

4.4 HPSG Parsing Results

We evaluated the HPSG parsers using different
supertagger training methods. For the baseline
HPSG parser, a CFG-filter is already incorporated
to accelerate the parsing process. In the follow-
ing experiments, we fed the parser all the possi-
ble supertag candidates with the prediction scores
generated by the supertaggers. We controlled the
upper bound of the chart size in the CFG-filter to
make the parser more efficient.

Table 4 shows the results of the different pars-
ing models. We first compared the baseline
parsers using different supertaggers. The forest-
guided supertagger improved the final FT parser’s
F-score by 0.68% (statistically significant) over
the PW parser using the PW supertagger, which
did not consider global grammar constraints dur-
ing the supertagger training process. The parsing
time of the FT parser was very close to that of the
PW parser (108s vs. 106s), which was also ef-
ficient. The result empirically reflects that incor-
porating the global grammar constraints into the
supertagger training process can refine supertag
predicting scores, which become more consistent
and compatible with the parser.

We also compared our results with a state-of-
the-art HPSG parser using the same grammar.
Enju (Miyao, 2005; Ninomiya et al., 2007) is
a log-linear model based HPSG parser, which
uses a maximum entropy model for the struc-
ture disambiguation. In contrast to our baseline
parser, full HPSG grammar is directly used with
CKY algorithm in the parsing stage. As for the
parsing performance, our baseline PW parser us-
ing the PW supertagger was 0.23% below the
Enju parser. However, by using the forest-guided
trained supertagger, our improved FT parser per-

1286

Parser UP UR LP LR F-score Time †

FT Parser 92.28 92.14 89.38 89.23 89.31 108s
PW Parser 91.88 91.63 88.75 88.51 88.63 106s
Enju 2.3 92.26 92.21 88.89 88.84 88.86 775s

Table 4: Parser performance on Section 23. “FT Parser” represents baseline parser which uses forest-
guided trained supertagger. “PW Parser” represents the baseline parser which uses the point-wise av-
eraged perceptron trained supertagger. (†) The time is the total time of both supertagging and parsing
and it was calculated on all 2291 sentences of the Section 23.

 85

 85.5

 86

 86.5

 87

 87.5

 88

 88.5

 89

0.5k
1k 1.5k

2k 2.5k
3k 3.5k

4k 10k
15k

20k

H
PS

G
 P

ar
sin

g
F-

sc
or

e

Chart size limit in the parsing

Parser using the PW supertagger
Parser using the 10k-train FT supertagger
Parser using the 20k-train FT supertagger

Figure 2: The F-score of the HPSG parsers on sec-
tion 22 using different settings for the chart size
limit in supertagger training and parsing.

formed 0.45% better than the Enju parser (default
settings) in F-score. In addition, our shift-reduce
style parser was faster than the Enju parser.

Beam size plays an important role for the
forest-guided supertagger training method, since a
larger beam size reduces the possibility of search
errors. Precisely speaking, we control the beam
size by limiting the number of edges in the chart
in both the forest-guided supertagger training pro-
cess and the final parsing. Figure 2 shows the re-
sults of setting different limits for the chart size
during supertagger training and parsing on the de-
velopment set. The X-axis represents the chart
size limitation for the parsing. “10k-train” rep-
resents the chart size to be limited to 10k dur-
ing FT supertagger training phase. A similar
representation is used for “20k-train”. There is
no tree structure search process for the baseline
PW supertagger. We evaluated the F-score of the
parsers using different supertaggers. As shown in
Figure 2, when the chart size of the parser was

more than 10k, the benefit of using forest-guided
supertaggers were obvious (around an absolute
0.5% improvement in F-score, compared to the
parser using the baseline PW supertagger). The
performance of the parser using “10k-train” FT
supertagger was already approaching to that of the
parser using “20k-train” FT supertagger. When
the chart size of the parser was less than 2000, the
forest-guided supertaggers were not work. Simi-
lar to the results showed in previous research (Hal
Daumé III and Daniel Marcu, 2005), it is better to
use the same chart size limit in the forest-guided
supertagger training and the final parsing.

5 Related Work

Since the supertagging technique is well known
to drastically improve the parsing speed and ac-
curacy, there is work concerned with tightly in-
tegrating a supertagger with a lexicalized gram-
mar parser. Clark and Curran (2004) investigated
a multi-tagger supertagging technique for CCG.
Based on the multi-tagging technique, supertagger
and parser are tightly coupled, in the sense that the
parser requests more supertags if it fails. They
(Clark and Curran, 2007) also used the percep-
tron algorithm to train a CCG parser. Differ-
ent from their work, we focused on improving
the performance of the deep parser by refining
the training method for supertagging. Ninomiya
et al. (2007) used the supertagging probabili-
ties as a reference distribution for the log-linear
model for HPSG, which aimed to consistently
integrate supertagging into probabilistic HPSG
parsing. Prins et al. (2001) trained a POS-
tagger on an automatic parser-generated lexical
entry corpus as a filter for Dutch HPSG parsing
to improve the parsing speed and accuracy.

1287

The existing work most similar to ours is
Boullier (2003). He presented a non-statistical
parsing-based supertagger for LTAG. Similar to
his method, we used a CFG to approximate the
original lexicalized grammar. The main difference
between these two methods is that we consider
the grammar constraints in the training phase of
the supertagger, not only in the supertagging test
phase and our main objective is to improve the
performance of the final parser.

6 Conclusions and Future Work

In this paper, based on the observation that su-
pertaggers are commonly trained separately from
lexicalized parsers without global grammar con-
straints, we proposed a forest-guided supertagger
training method to integrate supertagging more
tightly with deep parsing. We applied this method
to HPSG parsing and made further significant im-
provement for both supertagging (0.28%) and the
HPSG parsing (0.68%) compared to the baseline.
The improved parser also achieved a competitive
result (89.31%) with a faster parsing speed, com-
pared to a state-of-the-art HPSG parser.

For future work, we will try to weight the for-
est trees for the supertagger training and extend
this method to other lexicalized grammars, such
as LTAG and CCG.

Acknowledgments

We are grateful to the anonymous reviewers for
their valuable comments. We also thank Goran
Topic and Pontus Stenetorp for their help proof-
reading this paper. The first author was sup-
ported by The University of Tokyo Fellowship
(UT-Fellowship). This work was partially sup-
ported by Grant-in-Aid for Specially Promoted
Research (MEXT, Japan).

References
Bangalore, Srinivas and Aravind K. Joshi. 1999.

Supertagging: An approach to almost parsing.
Computational Linguistics, 25:237–265.

Birch, Alexandra, Miles Osborne, and Philipp Koehn.
2007. CCG supertags in factored statistical machine
translation. In Proceedings of the Second Workshop
on Statistical Machine Translation, pages 9–16.

Boullier, P. 2003. Supertagging: A non-statistical
parsing-based approach. In In Proceedings IWPT-
2003, volume 3, pages 55–65.

Chen, John and Owen Rambow. 2003. Use of deep
linguistic features for the recognition and labeling
of semantic arguments. In Proceedings of EMNLP-
2003, pages 41–48.

Clark, Stephen and James R. Curran. 2004. The
importance of supertagging for wide-coverage ccg
parsing. In Proceedings of COLING-04, pages 282–
288.

Clark, S. and J.R. Curran. 2007. Perceptron train-
ing for a wide-coverage lexicalized-grammar parser.
In Proceedings of the Workshop on Deep Linguistic
Processing, pages 9–16.

Clark, Stephen. 2002. Supertagging for combinatory
categorial grammar. In Proceedings of the 6th In-
ternational Workshop on Tree Adjoining Grammars
and Related Frameworks (TAG+ 6), pages 19–24.

Collins, M. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of EMNLP-2002, pages 1–8.

Hal Daumé III and Daniel Marcu. 2005. Learning
as search optimization: Approximate large margin
methods for structured prediction. In International
Conference on Machine Learning (ICML), pages
169–176.

Hassan, Hany, Mary Hearne, and Andy Way. 2007.
Supertagged phrase-based statistical machine trans-
lation. In Proceedings of ACL-2007, pages 288–
295.

Kiefer, Bernd and Hans-Ulrich Krieger. 2000. A
context-free approximation of head-driven phrase
structure grammar. In Proceedings of IWPT-2000,
pages 135–146.

Matsuzaki, Takuya, Yusuke Miyao, and Jun’ichi Tsu-
jii. 2007. Efficient HPSG Parsing with Super-
tagging and CFG-filtering. In Proceedings of
IJCAI-07, pages 1671–1676.

Miyao, Yusuke. 2005. Probabilistic disambiguation
models for wide-coverage HPSG parsing. In Pro-
ceedings of the 43rd AnnualMeeting on Association
for Computational Linguistics, pages 83–90.

Miyao, Yusuke. 2006. From Linguistic Theory to Syn-
tactic Analysis: Corpus-Oriented Grammar Devel-
opment and Feature Forest Model. Ph.D. Disserta-
tion, The University of Tokyo.

1288

Ninomiya, Takashi, Yoshimasa Tsuruoka, Takuya
Matsuzaki, and Yusuke Miyao. 2006. Extremely
lexicalized models for accurate and fast HPSG pars-
ing. In Proceedings of EMNLP-2006, pages 155–
163.

Ninomiya, T., T. Matsuzaki, Y. Miyao, and J. Tsujii.
2007. A log-linear model with an n-gram reference
distribution for accurate HPSG parsing. In Proceed-
ings of IWPT-2007, pages 60–68.

Pollard, Carl and Ivan A. Sag. 1994. Head-driven
Phrase Structure Grammar. University of Chicago
/ CSLI.

Prins, R. and G. Van Noord. 2001. Unsupervised
Pos-Tagging Improves Parsing Accuracy And Pars-
ing Efficiency. In Proceedings of IWPT-2001, pages
154–165.

Zhang, Yao-zhong, Takuya Matsuzaki, and Jun’ichi
Tsujii. 2009. HPSG Supertagging: A Sequence La-
beling View. In Proceedings of IWPT-2009, pages
210–213.

1289

