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ABSTRACT
We present a new method to generate extractive multi-document summaries. The method
uses Integer Linear Programming to jointly maximize the importance of the sentences
it includes in the summary and their diversity, without exceeding a maximum allowed
summary length. To obtain an importance score for each sentence, it uses a Support Vector
Regression model trained on human-authored summaries, whereas the diversity of the
selected sentences is measured as the number of distinct word bigrams in the resulting
summary. Experimental results on widely used benchmarks show that our method achieves
state of the art results, when compared to competitive extractive summarizers, while being
computationally efficient as well.
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1 Introduction

A multi-document summarization system aims to generate a single summary from an input
set of documents. The input documents may have been obtained, for example, by submitting
a query to an information retrieval engine and retaining the most highly ranked documents,
or by clustering the documents of a large collection and then using each cluster as a set of
documents to be summarized. Although evaluations with human judges also examine the
coherence, referential clarity, grammaticality, and readability of the summaries (Dang, 2005,
2006; Dang and Owczarzak, 2008), and some of these factors have also been considered in
recent summarization algorithms (Nishikawa et al., 2010b; Woodsend and Lapata, 2012),
most current multi-document summarization systems consider only the importance of the
summary’s sentences, their non-redundancy (also called diversity), and the summary length
(McDonald, 2007; Berg-Kirkpatrick et al., 2011; Lin and Bilmes, 2011).

An extractive multi-document summarizer forms summaries by extracting (selecting) sen-
tences from the input documents, without modifying the selected sentences. By contrast,
an abstractive summarizer may also shorten or, more generally, rephrase the selected sen-
tences. In practice, the additional processing of the selected sentences may only marginally
improve or even reduce the perceived quality of the resulting summaries (Gillick and Favre,
2009), though recent work has produced abstractive summarization methods that perform
better than extractive ones (Berg-Kirkpatrick et al., 2011; Woodsend and Lapata, 2012).
Nevertheless, the difference in the performance of extractive and abstractive summarizers is
often small, and abstractive summarizers typically require more processing time, as well as
tools and resources (e.g., reliable large coverage parsers, paraphrasing rules) that are often
not available in less widely spoken languages. Hence, it is still worth trying to improve
extractive summarizers, at least from a practical, application-oriented point of view.

Many multi-document summarizers, especially extractive ones, adopt a greedy search when
constructing summaries. For example, they may rank the sentences of the input documents
by importance, and then iteratively add to the summary (and remove from the ranked list
of input sentences) the sentence with the highest importance score, until the maximum
allowed summary length has been reached, possibly discarding sentences that are too similar
to sentences already included in the summary. Recent work has shown that adopting more
principled optimization methods based on Integer Linear Programming (ILP), instead of
greedy search, can lead to summaries that are better or at least comparable to those of state
of the art summarizers (McDonald, 2007; Gillick and Favre, 2009; Nishikawa et al., 2010a).

In this paper, we introduce a new extractive multi-document summarization method that uses
ILP to jointly optimize the importance of the summary’s sentences and their diversity (non-
redundancy), also respecting the maximum allowed summary length. Our method is more
efficient than the seminal ILP-based summarizer of McDonald (2007), because of its simpler
ILP model. The main competitor of our method, if we exclude abstractive summarizers, is
the extractive version of Berg-Kirkpatrick et al.’s (2011) summarizer, which has the best
previously reported results in extractive multi-document summarization. Inspired by Berg-
Kirkpatrick et al.’s work, we include in the objective function of our ILP model the number
of distinct word bigrams (of the input documents) that occur in the summary, but we use
that number to measure diversity, unlike Berg-Kirkpatrick et al.’s work, where bigrams are
weighted to measure importance. To obtain an importance score for each sentence, we use
a Support Vector Regression (SVR) model (Vapnik, 1998), which has no direct counter-part
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in Berg-Kirkpatrick et al.’s method. We show that our ILP method achieves state of the art
ROUGE scores (Lin, 2004) on widely used benchmark datasets, when compared to Berg-
Kirkpatrick’s and other competitive extractive summarizers, also outperforming two greedy
baselines that use only the importance scores of the SVR. For completeness, we also discuss
and compare against the abstractive version of Berg-Kirkpatrick et al.’s summarizer, and the
state of the art abstractive summarizer of Woodsend and Lapata (2012).

Section 2 below discusses previous work on ILP methods for summarization. Section 3
presents our own ILP model, after first introducing the SVR model of sentence importance and
the greedy baselines. Section 4 presents the experiments that we conducted and discusses
their results. Section 5 concludes and proposes directions for further research.

2 Related work
The first ILP method for summarization was proposed by McDonald (2007). It constructs
summaries by maximizing the importance of the selected sentences and minimizing their
pairwise similarity, as shown below. No sentence ordering is performed.

max
x ,y

n∑
i=1

imp(si) · x i −
n∑

i=1

n∑
j=i+1

sim(si , s j) · yi, j (1)

subject to:
n∑

i=1

li · x i ≤ Lmax (2)

and (for i = 1, . . . , n and j = i + 1, . . . , n):

yi, j − x i ≤ 0 (3)

yi, j − x j ≤ 0 (4)

yi + x j − yi, j ≤ 1 (5)

Here, n is the number of sentences in the input documents; imp(si) is the importance score
of sentence si; li is the length of si; sim(si , s j) is the similarity of sentences si and s j; and Lmax
is the maximum allowed length. The x i variables, jointly denoted x , are binary and indicate
whether or not the corresponding sentences si are included (selected) in the summary. The
yi, j variables, jointly denoted y , are also binary and indicate whether or not both si and s j
are included in the summary. Constraint 2 ensures that the maximum total length is not
exceeded. Constraints 3–5 ensure that the values of x i , x j , and yi, j are consistent (e.g., if
yi, j = 1, then x i = x j = 1; and if yi, j = 0, then x i = 0 or x j = 0).

McDonald showed experimentally that the ILP model above achieves better ROUGE scores
(Lin, 2004) than a greedy method that attempts to maximize the same objective (1). However,
McDonald also showed that the ILP model above corresponds to an NP-hard problem and is,
therefore, intractable for a large number of sentences. A set of experiments by McDonald
confirmed that the model does not scale up well in practice, mostly because of the O(n2)
yi, j variables that are used to model the redundancy between sentences. Furthermore, the
ROUGE scores of McDonald’s ILP model were not always better than those obtained using a
modified version of the Knapsack dynamic programming algorithm (Cormen et al., 2001).

In a more recent approach, Berg-Kirkpatrick et al. (2011) presented an ILP method based
on the notion of ‘concepts’, a notion initially introduced by Gillick and Favre (2009). The
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so called ‘concepts’ are actually word bigrams, all the word bigrams of the documents
to be summarized. Each bigram has a weight wi that indicates its importance. The ILP

objective (6) of Berg-Kirkpatrick et al. prefers summaries with many important concepts,
i.e., summaries whose bigrams have a large sum of weights wi; below bi are binary variables
indicating which bigrams (|B| in total) are present in the summary. An additional constraint,
not shown here, ensures that the maximum allowed summary length is not exceeded.

max
b,c

h(b, c) =max
b,c

|B|∑
i=1

wi · bi +
|C |∑
i=1

ui · ci =
|B|∑
i=1

(W T ·Φi) · bi +
|C |∑
i=1

(U T ·Ψi) · ci (6)

Berg-Kirkpatrick et al.’s model also takes into account the possible subtree cuts (deletions)
of the parse trees of the sentences of the input documents. The cuts give rise to different
compressions (shortenings) of the sentences; hence, Berg-Kirkpatrick et al.’s summarizer is
an abstractive one. In the objective (6), ui are the weights of the possible subtree cuts of all
the sentences of the input documents, and ci are binary variables indicating which cuts (|C |
in total) are used. Additional contraints, not shown above, ensure that the values of bi and
ci are consistent. Overall, Berg-Kirkpatrick et al.’s method aims to produce summaries that
contain many important bigrams, while also performing many desirable subtree cuts.

The weights wi and ui are themselves estimated as weighted sums of features, i.e., wi =
W T ·Φi , where Φi is a feature vector describing the bigram of the binary variable bi , and W
is a vector of feature weights; similarly, ui = U T ·Ψi , where Ψi is a feature vector describing
the subtree cut of the binary variable ci , and U is a vector of feature weights.1 The feature
vector Φi includes, for example, the frequency of the corresponding bigram in the documents
to be summarized, and the minimum sentence position (e.g., 3rd sentence in a document)
of the sentences that contain that bigram in the input documents. The features of Ψi show,
for example, if a relative clause or a temporal phrase was cut.

Berg-Kirkpatrick et al. use a structured Support Vector Machine (SVM) (Vapnik, 1998;
Tsochantaridis et al., 2004) that assigns to each candidate summary the score h(b, c) of the
objective function (6), given W and U . During training, the SVM searches for the values of W
and U that allow it to prefer the gold summary (of each training set of input documents) to
all the other possible summaries (of the same input documents) by a margin determined by a
loss function. Berg-Kirkpatrick et al. use a bigram recall loss function similar to ROUGE-2 (Lin,
2004). The loss function causes more emphasis (larger margin) to be placed on preferring
the gold summaries to other summaries that share many bigrams with the gold ones. The
learnt W and U are then used in the objective (6).

Berg-Kirkpatrick et al. report that their full method achieves higher ROUGE scores than
an extractive version of their method (without the subtree cuts, i.e., without sentence
compression) with no significant decrease in grammaticality (when sentence compression
is used), unlike other work (Gillick and Favre, 2009), where sentence compression was
found to reduce grammaticality. The extractive version of Berg-Kirkpatrick et al.’s method
omits the second term of Formula (6), as in the previous work of Gillick and Favre (2009).
As already noted, the extractive version of Berg-Kirkpatrick et al.’s method has the best
previously published results in extractive multi-document summarization.

1Berg-Kirkpatrick et al. (2011) use different terminology. A minor difference from their description of their
method is that they seem to set W = U , but in a more general formulation this does not seem to be necessary.
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More recently, Woodsend and Lapata (2012) proposed an ILP-based method that forms
a summary by maximizing the objective function shown below. The objective function
combines the importance fB(z) of the bigrams in the summary’s sentences, the salience fS(z)
of the parse tree nodes of the summary’s sentences, and a unigram language model fLR(z),
which penalizes sentences containing words that are unlikely to appear in summaries; we
do not discuss fLR(z) further to save space.

maxz fB(z) + fS(z) + fLR(z) (7)

The argument z collectively denotes binary variables zi , one zi for each node of the parse tree
of each sentence of the input documents. Each zi shows whether or not the corresponding
node has been retained or deleted. By deleting nodes, the method can compress sentences;
hence, this is also an abstractive summarization method. The fB(z) component is the same
as in Berg-Kirkpatrick et al.’s work ( fB(z) =

∑|B|
i=1 wi · bi). Additional constraints ensure that

a bigram can be selected only if at least a parse tree node that subsumes it has been selected,
that the maximum summary length is not exceeded etc.

To compute fS(z), Woodsend and Lapata train a linear SVM, with separating hyperplane
W T · Φi = 0, to predict whether or not a sentence si of an input set of documents would
be selected by a human creating a summary. The fS(z) score, defined below, is the sum of
the trained SVM’s predictions, for all the phrases that correspond to the retained parse tree
nodes of the input sentences; Φi is a feature vector describing each retained phrase, with
features indicating, for example, if the phrase was obtained from the first sentence of an
input document, if it contains pronouns etc.; W are the feature weights learnt by the SVM.

fS(z) =
∑

i

(W T ·Φi) · zi (8)

A second SVM is trained to exclude sentences that are too long, contain quotations etc. The
predictions of the second SVM are used to add hard constraints to the ILP model, rather than
including the predictions in the ILP objective function (7).

The method of Woodsend and Lapata optionally employs a quasi-synchronous tree grammar
(QSTG), to generate candidate compressions and paraphrases of the source sentences. The
QSTG grammar is learnt from aligned summary and source sentences. When the grammar is
used, the rest of the method does not operate only on the sentences of the input documents,
but also on rephrasings of these sentences, produced by the grammar. Hence, in its full
form, the method of Woodsend and Lapata is abstractive not only because it can delete tree
nodes of the parse trees, but also because it can rephrase sentences using the grammar. It
can be turned into an extractive summarization method by disabling the QSTG grammar and
disallowing tree node deletions. Woodsend and Lapata provide experimental results of their
method without the QSTG grammar, but not without tree node deletions; hence, we could
not compare directly to a purely extractive version of Woodsend and Lapata’a summarizer.

Lin and Bilmes (2011) construct summaries by maximizing a monotone submodular function.
This is an NP-hard problem; however, there is a greedy algorithm that approximates the
optimum by a constant factor. Lin and Bilmes show that several previous summarization
approaches can be described in terms of submodular functions. They also propose their
own submodular functions for summarization, which combine importance and diversity.
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3 Our method
In this section, we first discuss our SVR model that assigns importance scores to the sentences
of the input documents, and two greedy baseline summarizers that use the SVR without ILP.
We then introduce our ILP method, which jointly maximizes the importance and diversity of
the selected sentences, while respecting the maximum allowed summary length.

3.1 The SVR model of sentence importance
A Support Vector Regression (SVR) model aims to learn a function f : Rn 7→ R, which
will be used to predict the value of a variable y ∈ R given a feature vector X ∈ Rn. In
particular, given l training instances (X1, y1), . . . , (X l , yl), an SVR model is learnt by solving
the following optimization problem (Vapnik, 1998); W is a vector of feature weights; φ is a
function that maps feature vectors to a new vector space of higher dimensionality to allow
non-linear functions to be learnt in the original space; C > 0 and ε > 0 are given.

min
W,b,ξ,ξ∗

1

2
‖W‖2 + C

l∑
i=1

ξi + C
l∑

i=1

ξ∗i (9)

subject to (for i = 1, . . . , l):

W T ·φ(X i) +w0 − yi ≤ ε+ ξi (10)

yi −W T ·φ(X i)−w0 ≤ ε+ ξ∗i (11)

ξi ≥ 0 (12)

ξ∗i ≥ 0 (13)

The goal is to learn a linear (in the new space) function, whose prediction (value) W T ·
φ(X i)+w0 for each training instance X i will not to be farther than ε from the target (correct)
value yi . Since this is not always feasible, two slack variables ξi and ξ∗i are used to measure
the prediction’s error above or below the target yi . The objective (9) jointly minimizes the
total prediction error and ‖W‖, to avoid overfitting.2

In our case, X i is the feature vector of a sentence and yi is the sentence’s importance score.
During training, the target score yi of each sentence s, i.e., the score that the SVR should
ideally return, is taken to be the average of the ROUGE-2 and ROUGE-SU4 scores (Lin, 2004)
of s, comparing s against the corresponding gold (human-written) summaries; the latter are
included in the training datasets that we used. We took the average of ROUGE-2 and ROUGE-
SU4, because they are the two most commonly used measures to automatically evaluate
machine-generated summaries against gold ones. Roughly speaking, both measures compute
the bigram recall of a summary (or individual sentence) being evaluated against multiple
gold summaries (provided by different human authors), but ROUGE-SU4 also considers skip
bigrams with a maximum distance of 4 words between the words of each skip bigram.
Both measures have been found to correlate well with human judgements in extractive
summarization (Lin, 2004). Hence, training the SVR to predict the average ROUGE-2 and
ROUGE-SU4 of each sentence can be particularly useful. Intuitively, a sentence with a high
ROUGE score has a high overlap with the gold summaries; and since the gold summaries

2We use the SVR implementation of LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) with an
RBF (non-linear) kernel and LIBSVM’s parameter tuning facilities.
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contain the sentences that human authors considered most important, a sentence with
a high ROUGE score is most likely also important. This is why we view our SVR, which
attempts to predict the ROUGE score (average ROUGE-2 and ROUGE-SU4) of each sentence,
as a component that assigns an importance score to each sentence.

The idea to use ROUGE during training is also present in the work of Berg-Kirkpatrick et al.
(Section 2). The SVM that Berg-Kirkpatrick et al. use, however, in effect attempts to separate
(prefer) the gold summaries from the other possible summaries; ROUGE (more precisely, a
modified version of ROUGE-2) is included in the SVM as a loss function to force the SVM to
place more emphasis on separating gold summaries from other possible summaries with
high ROUGE scores. By contrast, the SVR that we use attempts to directly output the ROUGE

score of each sentence. Furthermore, the RBF kernel that we use in the SVR allows the
SVR to learn non-linear functions, whereas the linear SVM of Berg-Kirkpatrick et al. can
learn only linear functions. We also note that the two SVMs used by Woodsend and Lapata
(Section 2) perform binary classification (not regression), attempting to separate sentences
that a human would include in a summary from sentences that would not be included. The
(unsigned) distance from the learnt separating hyperplane of the first SVM is included in
the objective function of the ILP model, in effect treating the distance as a confidence score.
We believe that our use of a regression model (SVR) is a better choice, because the distance
from an SVM’s separating hyperplane is often a poor confidence estimate. We also note that
the second SVM of Woodsend and Lapata contributes only hard constraints to the ILP model,
without taking into account the SVM’s confidence.

We include the following features in the feature vector X of each sentence s:

• Sentence position SP(s):

SP(s) =
pos(s, d(s))
|d(s)|

where pos(s, d(s)) is the position (sentence order) of sentence s in its document d(s),
and |d(s)| is the number of sentences in d(s).

• Named entities NE(s):

NE(s) =
n(s)

len(s)
n(s) is the number of named entities in s, and len(s) is the number of words in s.3

• Levenshtein distance LD(s, q): The Levenshtein Distance (Levenshtein, 1966) between
the user’s query q and sentence s; insertions, deletions, and replacements affect entire
words. In the datasets we experimented with, the documents to be summarized were
relevant to a query q, which was always available.

• Word overlap WO(s, q): The number of words shared by the query q and sentence s,
after removing stop words and duplicate words from both q and s.

• Content word frequency CF(s) and document frequency DF(s): We use these measures
as defined by Schilder and Ravikumar (2008). CF(s) is defined as follows:

CF(s) =

∑cs
i=1 pc(wi)

cs

3We use Stanford University’s named entity recognizer (consult http://nlp.stanford.edu/).
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where cs is the number of content words in sentence s, pc(w) =
m
M

, m is the number
of occurrences of content word w in the input documents, and M is the total number
of content word occurences in the input documents. Similarly, DF(s) is defined as:

DF(s) =

∑cs
i=1 pd(wi)

cs

where pd(w) =
d
D

, d is the number of input documents the content word w occurs in,
and D is the number of all input documents.

Experiments on the development set (see below) confirmed that all the features have a
positive impact, i.e., the results are worse, if any of the features are removed.

3.2 The baseline summarizers

We compare against two greedy baselines that use the SVR model of sentence importance,
but not ILP. The first one, called GREEDY, uses the trained SVR model of the previous section
to assign importance scores to all the sentences of the documents to be summarized. It
then ranks the sentences by decreasing importance score and constructs the summary by
iteratively selecting (and removing from the ranked list of sentences) the sentence with the
highest importance score that fits in the summary space left.

The second baseline, called GREEDY-RED, operates in the same way, but it also takes into
account redundancy. When a new sentence (with the highest importance score among the
remaining sentences in the ranked list) is about to be added to the summary, its cosine
similarity (computed on words) to all the sentences that have already been included in the
summary is computed. If the similarity between the new and any of the already selected
sentences exceeds a threshold t, the new sentence is discarded and a new iteration starts,
where the next sentence of the ranked list of remaining sentences is considered. In our
experiments, t was determined by tuning GREEDY-RED on development data (see below).

3.3 Our ILP summarization model

Instead of directly using the importance score fSVR(si) of each sentence si, as returned by
the SVR model of Section 3.1, we normalize it using the maximum and mimimum values
that the SVR model returns for the j = 1, . . . , n sentences of the input documents:

ai =
fSVR(si)−min j fSVR(s j)

max j fSVR(s j)−min j fSVR(s j)
(14)

The objective (15) of our summarization ILP model sums the normalized relevance scores ai
of the selected sentences to estimate the overall importance imp(S) of the resulting summary
S. It also estimates the diversity div(S) of S by calculating how many word bigrams of the
documents being summarized are present in the selected sentences; when more bigrams
are present in the summary, the summary’s sentences share fewer bigrams, i.e., they are less
redundant. Notice that we do not assign importance scores to the bigrams, unlike the work
of Berg-Kirkpatrick et al. and Woodsend and Lapata (Section 2). The binary variables x i
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and b j indicate which sentences si and which word bigrams g j , respectively, are present in
the summary; see Figure 1 for an example of the relations between the x i and b j variables.

max
b,x
λ1 · imp(S) +λ2 · div(S) =max

b,x
λ1 ·

n∑
i=1

ai

kmax
· x i +λ2 ·

|B|∑
j=1

b j

n
(15)

n∑
i=1

li · x i ≤ Lmax (16)

∑
g j∈Bi

b j ≥ |Bi | · x i , for i = 1, . . . , n (17)

∑
si∈S j

x i ≥ b j , for j = 1, . . . , |B| (18)

Again, li is the length of sentence si , Lmax is the maximum allowed summary length, and
n is the number of input sentences. imp(S) is normalized to [0,1] using the maximum
number of sentences kmax that can be included in the summary. To estimate kmax we divide
the maximum available space Lmax by the length of the shortest input sentence. We also
divide div(S) by n, which causes div(S) to range mostly in [0,1] in our experiments. The
values of λ1 and λ2 are tuned on development data. We set λ1 + λ2 = 1. Constraint 16
guarantees that Lmax is not exceeded. The other two constraints are explained below:

• Constraint 17: Bi is the set of bigrams that appear in sentence si , |Bi | is the cardinality
of Bi, g j ranges over the bigrams in Bi, and b j is the binary variable that shows if
bigram g j has been selected. If a sentence si is selected (x i = 1), then all of its bigrams
must also be selected, i.e.,

∑
g j∈Bi

b j = |Bi | and Constraint 17 holds. If sentence si is
not selected (x i = 0), then some of its bigrams may still be selected, if they occur in
another selected sentence; hence

∑
g j∈Bi

b j ≥ 0 and Constraint 17 holds again.

• Constraint 18: Again, b j is the binary variable that shows if g j has been selected.
|B| is the total number of (distinct) bigrams of the n input sentences; S j is the set
of sentences that bigram g j appears in; and x i is the binary variable that shows if
sentence si has been selected. If a bigram g j is selected (b j = 1), then at least one
sentence that contains that bigram must also be selected; hence,

∑
si∈S j

x i ≥ 1 and
Constraint 18 holds. If bigram g j is not selected (b j = 0), then none of the sentences
that contain it may be selected; hence,

∑
si∈S j

x i = 0 and Constraint 18 holds again.

In preliminary experiments, we noticed that our ILP model above, called ILP1, tended to
select many short sentences, which had a poor ROUGE match with the gold summaries. To
address this issue, we developed an alternative ILP model, called ILP2, whose objective
function (19) rewards longer sentences by multiplying their importance scores ai with their
lengths li (in words). The constraints of ILP2 remain as in ILP1 (Constraints 16–18).

max
b,x
λ1 ·

n∑
i=1

ai ·
li

Lmax
· x i +λ2 ·

|B|∑
j=1

b j

n
(19)
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x1

��   **

x2

�� ''

x3

~~ ��
b1 b2 b3 b4

Figure 1: There are 3 sentences (corresponding to the binary variables x1, x2, x3) containing
4 word bigrams (corresponding to variables b1, b2, b3, b4). For example, sentence s1 contains
the first, second, and fourth bigrams; and if sentences s1 and s2 are selected (x1 = 1 and
x2 = 1), then the bigrams they contain must also be selected (b1 = 1, b2 = 1, b4 = 1).

4 Experiments
We now present the experiments that we performed, starting from the datasets we used.

4.1 Datasets and experimental setup
We used the datasets of DUC 2005, DUC 2006, DUC 2007, and TAC 2008 (Dang, 2005, 2006;
Dang and Owczarzak, 2008).4 Each dataset contains document clusters. Each cluster
contains documents relevant to a query (a question or topic description), which is also given.
For each cluster, a summary not exceeding a maximum allowed length has to be produced,
so that the summary will provide an answer to the corresponding query. Multiple reference
(gold, human-authored) summaries are also provided per cluster. Table 1 provides more
information on the datasets we used. For our experiments, we extracted all the sentences
from the documents of each cluster, discarding sentences shorter than or equal to 7 words.
We also applied a small set of cleanup rules to remove unnecessary formatting tags.

dataset documents clusters reference word limit
per cluster summaries (in words)

DUC 2005 25–50 50 4–9 250
DUC 2006 25 50 4 250
DUC 2007 25 45 4 250
TAC 2008 10 48 4 100

Table 1: Datasets used in our experiments.
The SVR model of sentence importance (Section 3.1) was trained on the sentences of DUC

2006 (i.e., DUC 2006 was our training dataset) and it was used to assign importance scores
to the sentences of the clusters of DUC 2005, DUC 2007, and TAC 2008. For each document
cluster, we used the n= 100 sentences with the highest importance scores as input to the
baseline and ILP summarizers of Sections 3.2 and 3.3.

We note that ILP problems are in the worst case (for the most difficult ILP problems) NP-
hard. Our ILP1 and ILP2 models (Section 3.3) are generalizations of the 0-1 Knapsack
problem, which is known to be NP-hard; hence, our models also constitute NP-hard problems.
Nevertheless, very efficient ILP solvers are available.5 In the worst case, the off-the-shelf
solver that we use finds a solution (for ILP1 or ILP2, per summary) in 1.25 seconds and

4Consult also http://duc.nist.gov/ and http://www.nist.gov/tac/.
5We use the implementation of the Branch and Cut algorithm of the GNU Linear Programming Kit (GLPK);

consult http://sourceforge.net/projects/winglpk/.
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Figure 2: ROUGE-2 scores of the two versions of our ILP model on DUC 2007 data, used as
development data, with the SVR model of sentence importance trained on DUC 2006 data.

0.9 seconds in the DUC 2007 and TAC 2008 datasets, respectively. The solver takes more
time in DUC 2007 than in TAC 2008, because DUC 2007 summaries are longer (cf. Table 1)
and, therefore, the search space is larger. This efficiency is mostly due to the fact that the
x i and b j variables of ILP1 and ILP2 are in the order of hundreds and grow approximately
linearly to the number and size (word bigrams) of the input sentences, as opposed to the
quadratic (to the number of sentences) growth of the number of variables in McDonald’s
model (Section 2). Berg-Kirkpatrick et al. (2011) report very similar execution times; they
report that the solver they use finds the solution of their extractive formulation in less than
a second for most summaries of TAC 2008 and TAC 2009. Our method (ILP1 or ILP2) takes
on average 10–11 seconds to form each summary, including the time to read and preprocess
the input documents, formulate the ILP model etc. By contrast Woodsend and Lapata (2012)
report that their method takes 55 seconds on average for each summary, though presumably
this also includes parsing the input and applying the QSTG grammar.

4.2 Experiments on development data

To determine which of the two versions (ILP1 or ILP2) of our ILP model performs best and to
tune their parameters, we experimented on the DUC 2007 dataset, i.e., we used the DUC

2007 dataset as our development data; recall that the DUC 2006 dataset was used as training
data in all cases. We used 11 different values of λ1 (λ2 = 1−λ1) in both ILP1 and ILP2, and
we evaluated the generated summaries using ROUGE-2. The results of these experiments
are presented in Figure 2. ILP2 is better than ILP1 for all values of λ1, and its best ROUGE-2
score is obtained for λ1 = 0.4 (λ2 = 0.6). The fact that the best results were obtained for
non-zero λ1 and λ2 values also shows that both the sentence importance component (SVR)
and the diversity component (bigram count) contribute to the results of our ILP models.

We also compared the average number of selected sentences per cluster of ILP1 and ILP2 on
DUC 2007 data. As already noted and illustrated in Figure 3, ILP1 tends to select more and,
therefore, shorter sentences than ILP2; these shorter sentences have worse ROUGE matches
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Figure 3: Average number of sentences selected by the two versions of our ILP model on
DUC 2007 data, used as development data, with the SVR model trained on DUC 2006 data.

with the reference summaries, which is why ILP1 performs worse than ILP2. Figure 3 also
shows that ILP2 selects approximately the same number of sentences for all λ1 values; this
is because ILP2 tends to always select relatively long sentences and, hence, the number of
selected sentences that fit in the available space cannot vary as much as in ILP1.

In Table 2, we present the ROUGE scores of the two versions of our ILP model (for λ1 = 0.4)
on the DUC 2007 dataset, along with the corresponding scores of the GREEDY and GREEDY-RED

baselines (Section 3.2), which use only the SVR without ILP. We also show the scores of
several state of the art systems, both extractive and abstractive, as they were reported in the
corresponding articles; more recently published results are shown first. Our ILP2 model has
the best reported ROUGE-2 score on the DUC 2007 dataset, and the second best ROUGE-SU4
score, though one should keep in mind that the DUC 2007 dataset was our development set.

4.3 Experiments on test data

We then evaluated ILP2 with λ1 = 0.4, which was our best system in the experiments on the
development data (DUC 2007), against the systems with the highest published ROUGE scores
on TAC 2008 and DUC 2005 data, our two test datasets.6 The results of these experiments
are listed in Tables 3 and 4, respectively. On the TAC 2008 dataset (Table 3), the most recent
of the datasets we experimented with, our ILP2 method achieves the second best ROUGE-SU4
score and the second best ROUGE-2 score, following the method of Woodsend and Lapata
with the QSTG grammar enabled, and the abstractive (full) method of Berg-Kirkpatrick et al.,
respectively (see Section 2). Our ILP2 method performs better than the method of Woodsend
and Lapata without the QSTG grammar, even though the method of Woodsend and Lapata
is still an abstractive one, even without the QSTG grammar (it can still delete parse tree
nodes), whereas our method is purely extractive. If we exclude abstractive summarizers,
our ILP2 method has the best ROUGE-2 and ROUGE-SU4 scores.

6We used Set A of TAC 2008.
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system ROUGE-2 ROUGE-SU4

ILP2 0.12517 0.17603
ILP1 0.12201 0.17283
GREEDY-RED 0.11591 0.16908
GREEDY 0.11408 0.16651

Lin and Bilmes 2011 0.12380 N/A
Celikyilmaz and Hakkani-Tur 2010 0.11400 0.17200
Haghighi and Vanderwende 2009 0.11800 0.16700
Schilder and Ravikumar 2008 0.11000 N/A
Pingali et al. 2007 (DUC 2007) 0.12448 0.17711
Toutanova et al. 2007 (DUC 2007) 0.12028 0.17074
Conroy et al. 2007 (DUC 2007) 0.11793 0.17593
Amini and Usunier 2007 (DUC 2007) 0.11887 0.16999

Table 2: Comparison of our ILP method against greedy baselines that use the same SVR

model of sentence importance without ILP, and against other state of the art summarizers on
DUC 2007 data (our development dataset). Our ILP method was trained on DUC 2006 data.

On the DUC 2005 dataset (Table 4), our ILP2 method has the best reported ROUGE-2 and
ROUGE-SU4 scores. Berg-Kirkpatrick et al. and Woodsend and Lapata provide no results of
their systems for this dataset. They also provide no results for the more recent TAC 2009
dataset, because they used it as their training set. We did not experiment with the TAC 2009
dataset, because our main competitors have not published results for that dataset.

We used paired t-tests (p < 0.05) to check if the differences between the scores of ILP2 and
the other systems were statistically significant. In Tables 3–4, + and − denote the existence
or absence of statistical significance, respectively. Unfortunately, the tests were possible only
when comparing ILP2 against the few systems we had ROUGE scores for per topic.

5 Conclusions
We presented a new ILP method (in two versions) for multi-document summarization. Our
method jointly maximizes the importance of the sentences it includes in a summary and their
diversity, without exceeding a maximum allowed summary length. To obtain an importance
score for each sentence, it uses an SVR model, trained on human-authored summaries to
predict the ROUGE score of each sentence. Diversity is measured as the number of word
bigrams of the input documents that occur in the resulting summary. Experimental results on
widely used benchmarks for news summarization show that our ILP method achieves state
of the art results among extractive summarizers. It also outperforms two greedy baselines
that use the same SVR model of sentence importance without ILP, and it performs better
than some abstractive summarizers. Our method is also very fast, and it does not require a
parser or other resources that are not always available in less widely spoken languages.

We are already experimenting with an extended version of our method that also performs
sentence compression. In future work, we hope to extend our ILP model to consider discourse
coherence, sentence aggregation, and referring expression generation.
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system ROUGE-2 ROUGE-SU4

ILP2 0.11168 0.14413

Woodsend and Lapata 2012 (with QSTG) 0.11370 0.14470
Woodsend and Lapata 2012 (without QSTG) 0.10320 0.13680
Berg-Kirkpatrick et al. 2011 (with subtree cuts) 0.11700 0.14380
Berg-Kirkpatrick et al. 2011 (without subtree cuts) 0.11050 0.13860
Shen and Li 2010 0.09012 0.12094
Gillick and Favre 2009 (with sentence compression) 0.11100 N/A
Gillick and Favre 2009 (without sentence compression) 0.11000 N/A
Gillick et al. 2008 (run 43 in TAC 2008) 0.11140− 0.14298−

Gillick et al. 2008 (run 13 in TAC 2008) 0.11044− 0.13985−

Conroy and Schlesinger 2008 (run 60 in TAC 2008) 0.10379− 0.14200−

Conroy and Schlesinger 2008 (run 37 in TAC 2008) 0.10338− 0.14277−

Conroy and Schlesinger 2008 (run 06 in TAC 2008) 0.10133+ 0.13977−

Galanis and Malakasiotis 2008 (run 02 in TAC 2008) 0.10012+ 0.13694−

Table 3: Comparison of our best ILP summarizer (ILP2) against state of the art summarizers
on TAC 2008 data (one of our two test datasets). Our ILP method was trained on DUC 2006
data. It has the best ROUGE-2 and ROUGE-SU4 scores among extractive summarizers.

system ROUGE-2 ROUGE-SU4
ILP2 0.08174 0.13640

Lin and Bilmes 2011 0.07820 N/A
Shen and Li 2010 0.07311 0.13061
McDonald 2007 (ILP) 0.06100 N/A
McDonald 2007 (Knapsack) 0.06700 N/A
Ye et al. 2005 0.0744+ 0.13461−

Li et al. 2005 0.07313+ 0.13158−

Daume and Marcu 2005 0.07089+ 0.12649+

Table 4: Comparing our best ILP summarizer (ILP2) against state of the art summarizers on
DUC 2005 data (one of our two test datasets). Our method was trained on DUC 2006 data.
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