
Proceedings of COLING 2012: Technical Papers, pages 1257–1274,
COLING 2012, Mumbai, December 2012.

Improved Combinatory Categorial Grammar Induction with
Boundary Words and Bayesian Inference

Yun HUANG1,2 Min ZHANG2 Chew Lim TAN1

1Department of Computer Science 2Human Language Department
National University of Singapore Institute for Infocomm Research
13 Computing Drive, Singapore 1 Fusionopolis Way, Singapore

{huangyun,tancl}@comp.nus.edu.sg mzhang@i2r.a-star.edu.sg

ABSTRACT
Combinatory Categorial Grammar (CCG) is an expressive grammar formalism which is able to
capture long-range dependencies. However, building large and wide-coverage treebanks for
CCG is expensive and time-consuming. In this paper, we focus on the problem of unsupervised
CCG induction from plain texts. Based on the baseline model in (Bisk and Hockenmaier,
2012), we propose following two improvements: (1) we utilize boundary part-of-speech
(POS) tags to capture lexical information; (2) we perform nonparametric Bayesian inference
based on the Pitman-Yor process to learn compact grammars. Experiments on English Penn
treebank demonstrate the effectiveness of our boundary model and Bayesian learning.

TITLE AND ABSTRACT IN ANOTHER LANGUAGE (CHINESE)

基基基于于于边边边界界界词词词和和和贝贝贝叶叶叶斯斯斯模模模型型型改改改进进进的的的组组组合合合范范范畴畴畴语语语法法法推推推导导导

组合范畴语法(CCG)是一种具有丰富表达能力的语法形式，它可以捕获长距离的依
赖关系。但是，构建大规模、覆盖面广的组合范畴语法语料库既昂贵又耗时。在本

文中，我们研究如何从普通文本中无监督地推导出组合范畴语法。基于现有的工

作(Bisk and Hockenmaier, 2012)，我们提出以下两个改进：(1)我们使用边界词的词性标
记把词汇化信息引入模型中；(2) 我们使用基于Pitman-Yor过程的非参数贝叶斯模型来学习
简洁的文法。在英语宾州树库上的实验结果显示了我们提出的边界词模型和贝叶斯模型的

有效性。

KEYWORDS: Grammar Induction, Combinatory Categorial Grammar, Boundary Words,
Bayesian Model.

KEYWORDS IN CHINESE: 语法推导,组合范畴语法,边界词,贝叶斯模型.

1257

1 Introduction

Unsupervised grammar induction has attracted research interests for a long time. The in-
duced grammars can be used to construct large treebanks (van Zaanen, 2000), study lan-
guage acquisition (Jones et al., 2010), etc. In recent years, numerous approaches have
been introduced to automatically induce hierarchical structures from plain strings. Some
approaches focus on the constituency grammar induction: the constituent-context model
(Klein and Manning, 2002), the data-oriented parsing (Bod, 2006), the common cover link
model (Seginer, 2007), and the tree-substitution grammars (TSG) (Cohn et al., 2009). The
other mainstream is the dependency grammar induction: the dependency model with va-
lence (DMV) (Klein and Manning, 2004; Headden III et al., 2009; Cohen and Smith, 2009),
TSG model for dependency (Blunsom and Cohn, 2010), etc.

Among these grammar formalisms, the Combinatorial Categorial Grammar (CCG) is a lexical-
ized, mildly-context-sensitive model (Steedman, 2000). In the formal grammar theory, CCGs
are known to be weekly equivalent to Linear Indexed Grammars, Tree-adjoining Grammars,
and Head Grammars (Vijay-Shanker and Weir, 1994). The CCG formalism provides a trans-
parent interface between syntax and semantics, such that the underlying semantics could be
naturally defined over syntactical derivations, including the long-range dependencies, the coor-
dination structure, and the extraction phenomenon (Bos et al., 2004; Zettlemoyer and Collins,
2007). As a mildly context-sensitive grammar, CCG can be efficiently parsed in polyno-
mial time, which makes them practical in real parsing tasks1. The wide-coverage com-
binatorial categorial grammars have been used in many NLP tasks, such as the lexical
acquisition (Blunsom and Baldwin, 2006), the parsing tasks (Hockenmaier and Steedman,
2002; Clark and Curran, 2003), and the statistical machine translation (Hassan et al., 2007;
Zhang and Clark, 2011). These supervised CCG models highly depend on the annotated train-
ing corpus, e.g. the CCGbank (Hockenmaier and Steedman, 2007). However, building large
and wide-coverage treebanks for CCG is expensive and time-consuming. Therefore, how to
induce CCG lexicons and grammars from unlabeled sentences has great values.

Some unsupervised CCG induction models have been proposed (Osborne and Briscoe,
1997; Watkinson and Manandhar, 1999; Ponvert, 2007; Boonkwan and Steedman, 2011;
Bisk and Hockenmaier, 2012). Most of these approaches define probabilistic models over CCG
rules and use the Expectation-Maximization (EM) algorithm to estimate parameters. The gen-
erative process generates grammar rules independently given their parents, without regard to
the lexical information. However, the constituents and contexts have been proven useful for
grammar induction (Klein and Manning, 2002; Headden III et al., 2009). Another issue of the
EM-based models is that the EM algorithm tends to overfit the training data, which requires
carefully smoothing (Headden III et al., 2009).

In this paper, we propose to incorporate the lexical information in the unsupervised CCG in-
duction in order to capture more complex language aspects. Specifically, an additional bound-
ary model, which defines probability distributions over the boundary part-of-speech tags, is
introduced during the probability calculation for parse trees. Furthermore, we present the
nonparametric Bayesian inference to alleviate the overfitting problem of EM. The Pitman-Yor
process (Pitman and Yor, 1997) is used to encourage rule reuse, resulting in compact gram-
mars. Although the boundary words and Bayesian inference have been used in other grammar

1Given grammar G, the parsing complexity of CCG is O(n3|G|) for the sentences with length n. Clark and Curran
(2007) report their supervised parser could parse 20− 30 sentences/second using the treebank grammar.

1258

induction models, so far as we know they are used in CCG induction for the first time. Experi-
mental results show that both the boundary model and the Bayesian inference outperform the
baseline CCG induction system significantly.

This paper is structured as follows. First we give a brief overview of the combinatorial cat-
egorial grammars in Section 2. Then we present the grammar generation step in Section 3.
In Section 4, we describe the baseline model and propose the boundary model and the non-
parametric Bayesian learning framework. Experimental results and related work are shown in
Section 5 and Section 6 respectively. We conclude our work in the final section.

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a linguistically expressive lexicalized grammar for-
malism (Steedman, 2000). In CCG, words and nonterminals are associated with rich syntactic
categories which capture the basic word order and subcategorization. Specifically, the cate-
gories in CCG are defined recursively: (1) There are some atomic categories, e.g. S, N; (2)
Complex categories take the form X/Y or X\Y, representing the syntactical function that takes
the input category Y and outputs the result category X. The forward slash (/) and the backward
slash (\) indicate the input category Y follows or precedes the complex category respectively.
Note that X and Y themselves may be complex categories too. Parentheses can be used to
specify the order of function applications if needed. By default, the slashes are left-associated,
e.g. “X\Y/Z” is the shorthand of “(X\Y)/Z”. If the order of categories is not important in some
cases, we use the symbol “|” to represent either the forward slash or the backward slash. The
following examples show some common categories in English grammars: S for sentences, N for
nouns and noun phrases2, (S\N)/N for transitive verbs, N/N for determiners and adjectives, etc.

The derivation of CCG is the sequence of CCG rule applications. There are a few kinds of rule
templates defined in CCG. The simplest rules are the forward application (>) and the backward
application (<), where the complex category consumes the whole input category:

X/Y Y ⇒ X (>)
Y X\Y ⇒ X (<)

The input category could be complex category as well, forming the composition rules:

X/Y Y|Z ⇒ X|Z (>B1)
Y|Z X\Y ⇒ X|Z (<B1)

Note that the above composition rules could reduce the categories X/Y and Y\Z to the category
X\Z, using the so-called cross composition rule. These rules give CCG the ability to deal with
the crossed dependencies in some languages such as Dutch or German3.

Higher order composition rules can be defined similarly:

X/Y Y|Z1| . . . |Zn ⇒ X|Z1| . . . |Zn (>Bn)
Y|Z1| . . . |Zn X\Y ⇒ X|Z1| . . . |Zn (<Bn)

In a sense, the application rules (> and <) can be regarded as the zero-order case of composi-
tion rules (>B0 and <B0).

2In formal English grammars, NP is often used to represent noun phrases(Hockenmaier and Steedman, 2007).
Following (Bisk and Hockenmaier, 2012), we do not distinguish noun phrase from nouns in this paper for efficiency.
This simple treatment causes some problems, e.g. the determiners would be treated as adjuncts and then regarded
optional, but actually they are needed for singular count nouns. We leave this problem to future work.

3See the example 71 (a German sentence) in (Steedman and Baldridge, 2011)

1259

The following examples show the CCG derivations of a declarative sentence:

John saw the man

N (S\N)/N N/N N
>

N
>

S\N
<

S

(1)

In this example, the lexical category (S\N)/N for the transitive verb “saw” restricts that the
verb must first consume an object noun (N) on the right to become the intransitive verb cate-
gory S\N, then take another noun (N) on the left as the subject to form the sentence S. We can
see that the lexicons encode rich lexical information as well as the syntactic restrictions.

For coordination, only the same categories can be conjuncted to yield a single category of the
same type in CCG. In detail, the CCG includes a ternary conjunction rule (&).

X conj X ⇒ X (&)

For the parsing algorithms (e.g. the bottom-up CKY algorithm) that require binary rules, we
often use the binarized conjunction rules (>& and <&):

X X[conj] ⇒ X (>&)
conj X ⇒ X[conj] (<&)

The type-raising rules are also included in CCG, which turn arguments into functions over
functions-over-such-arguments:

X ⇒ T/(T\X) (>T)
X ⇒ T\(T/X) (<T)

These rules are needed to form some unusual constituents, such as the constituent “John saw”
in the example (2). In this example, there is no argument on the right to transitive verb “saw”
due to the clause structure, so the noun “John” has to be type-raised.

the man that John saw

N/N N (N\N)/(S/N) N (S\N)/N
> >T

N S/(S\N)
>B1

S/N
>

N\N
<

N

(2)

Another example of type-raising is the uncommon coordination case (example (3)), in which
the two uncommon subject-verb categories S/N are conjuncted.

I dislike and Mary likes opera

N (S\N)/N conj N (S\N)/N N
>T >T

S/(S\N) S/(S\N)
>B1 >B1

S/N S/N
&

S/N
>

S

(3)

1260

In example (1) and (2), it should be emphasised that the same words have the same lexical
categories, although the sentence structures are totally different. This elegant treatment for
coordination and extraction structures in CCG allows easy recovery of the long-range depen-
dencies and semantics.

Following (Bisk and Hockenmaier, 2012), we group the complex categories into the following
two types according to their linguistic functions.

• Modifier category. Categories in the form of X|X are modifier categories. In other words,
modifier categories take one category as input and output the same category as result.
Some modifier category examples are the noun modifier “N/N”, the sentence modifier
“S\S”, and the more complex category “(S\S)/(S\S)”.
• Functor category. In contrast, the functor category takes one category as input but

output a different category as result, i.e. in the form of X|Y, where X and Y are different
categories. In the example (2), the follows are all functor categories: the transitive verb
“(S\N)/N”, the uncommon constituent “S/N”, the type-raised category “S/(S\N)”, and the
relative pronoun “(N\N)/(S/N)”.

The modifier categories and the functor categories play different linguistic roles. Using the
dependency terminology, the modifier category X|X acts as the dependent and modifies its
head X, while the functor category X|Y acts as the head of its dependent Y. We will revisit this
issue in the CCG evaluation (section 5.1).

In this paper, we focus on the problem of unsupervised CCG induction, the task to infer mean-
ingful grammars and tree structures from plain texts. We will first describe the grammar gen-
eration step in Section 3, and propose the boundary model and the Bayesian learning method
in Section 4.

3 Grammar Generation

The combinatory categorial grammars explicitly encode the head-modifier and head-argument
dependencies into rich syntactic categories. The first step of our CCG induction method is the
lexicon generation step. Bisk and Hockenmaier (2012) propose a simple iterative lexicon gen-
eration algorithm from the golden part-of-speech tags. Due to the simplicity and effectiveness
of this method, we adopt it to generate lexicons in our method. We rephrase their algorithm
with minor modifications in this section.

Only two atomic categories, N (nouns or noun phrases) and S (sentences) are allowed in the
grammar. Conjunction words (usually with part-of-speech tag CC in the Penn Treebank) are
expanded from a special conjunction category conj. All trees are generated from a special
start symbol TOP. Following (Bisk and Hockenmaier, 2012), we assume all strings are either
nouns or sentences, i.e. they are generated from one of the following two unary rules:

TOP→ N TOP→ S
In addition, we restrict that: (1) strings containing at least one verb must be sentences, i.e.
parsed with the TOP→ S rule; and (2) strings without any verb must be parsed with the TOP→
N rule4. Note that the above assumptions are not always true for real sentences. For instance,
there exist some sentence fragments and exclamatory sentences in the English treebank. In
this paper, we just follow previous work and have no special consideration on these cases for
simplicity.

4Only the first restriction is used in (Bisk and Hockenmaier, 2012).

1261

The initial CCG lexicon L (0) is created manually. We associate the noun POS tags with the
atomic category N, the verb POS tags with the atomic category S, and the conjunction POS tag
with the special category conj. For the POS tag set of the English Penn treebank (Marcus et al.,
1993), the initial CCG lexicons are shown as follows:

N : {DT, NN, NNS, NNP, NNPS, PRP}
S : {MD, VB, VBD, VBG, VBN,VBP, VBZ}

conj : {CC}
Note that the tag NNPS (representing plural proper nouns) and the tag VBP (representing verbs
of non-3rd person singular and in present tense) are missed in (Bisk and Hockenmaier, 2012),
but these two tags are found in the Penn treebank tag set.

The lexicon for atomic categories remains fixed after the initial lexicon L (0) has been created.
However, the POS tags may acquire more syntactic categories in the lexicon generation stage.
In each induction step, we first assign each POS tag with the categories induced in the previous
step, then create new candidates for adjacent POS tags of the training sentences.

• Modifier category. Assuming the i th POS tag in some given sentence has been associated
with category X, we create new modifier category X/X and X\X, if X satisfies one of the
following conditions (items with [c]):
[c] X is an atomic category;
[c] X is a modifier itself.

The newly created categories are inserted to the candidate set of the (i − 1)th POS tag
and the (i+ 1)th POS tag respectively.
• Functor category. For each pair of adjacent POS tags in the i th and the (i+1)th position

in each training sentence, and for each category X and Y associated with the two POS
tags, we consider that X may take Y as argument to form the functor category X/Y, and
Y may also take X as argument resulting in the functor Y\X. The new categories are
valid if the head H (input category) and the argument A (result category) satisfy one of
the following conditions (items with [c]) and violate none of the following restrictions
(items with [r]):
[c] H is a modifier or in the form of “(S|. . .)”, and A is the atomic category “N” or “S”;
[c] H is “S” and A is “N”, i.e. the categories “S/N” and “S\N” are allowed;
[r] A is not a modifier, i.e. any non-modifier (atoms and functors) may be argument;
[r] H is different from A, otherwise the result category is the modifier category rather

than the functor category;
[r] H is not “N”, since the atomic category “N” is assumed to take no arguments.

If the categories X/Y (or Y\X) passes the above tests, it is inserted to the candidate set of
the i th POS tag (and the corresponding (i+ 1)th POS tag).

After creating the lexicons for one sentence, we parse it with the created lexicons and remove
categories that can not lead to a successful parse. The rest categories are inserted to the lexicon
L (i) for the i th induction step. We perform this step twice to get the final lexicon L (2).
The above induction procedure is almost the same as the algorithm described in
(Bisk and Hockenmaier, 2012). One additional induction step they used is the “derived” in-
duction step, in which adjacent constituents that can be derived from the existing lexicon are
combined. However, their experiments do not show significant improvement of this lexicon
generation method, so we omit this step in our experiments.

1262

4 Improved CCG Induction Models

4.1 Basic Probabilistic Model
The basic model in this paper is the baseline model described in (Hockenmaier and Steedman,
2002), which is also used in (Bisk and Hockenmaier, 2012). There are four types of CCG rules:

1. the lexical (W) rules which generate terminal words;
2. the unary (U) rules which could be the root rules or the type-raising rules;
3. the left-headed (L) rules with the first child symbol as the head category, e.g. the forward

composition rules;
4. the right-headed (R) rules with the second child symbol as the head category, e.g. the

backward composition rules.

Binary trees are generated top-down recursively from the start symbol TOP. For each unex-
panded nonterminal P, the basic model first generates the expansion type exp ∈ {W,U,L,R}
according to Pe(exp|P). Then for each expansion type, the model generates either terminal
word w or head child H and possible non-head child N:

Lexical: Pe(exp= W|P) Pw(w|P,exp= W)
Unary: Pe(exp= U|P) PU (H|P,exp= U)

Left: Pe(exp= L|P) PL(H|P,exp= L) Pl(N|P,H,exp= L)
Right: Pe(exp= R|P) PR(H|P,exp= R) Pr(N|P,H,exp= R)

After the lexicon generation step, each POS tag acquires a lexicon of CCG categories. These lex-
icons and CCG rules are used to parse the training corpus. We use the Expectation Maximiza-
tion (EM) algorithm to estimate model parameters for the basic model. The Inside-Outside
algorithm (Lari and Young, 1990) is used to collect the expected counts in the E-step of the
EM algorithm.

4.2 Boundary Models
Boundary POS tags have been proven useful for detecting phrase boundaries in the supervised
setting (Xiong et al., 2010) and in the unsupervised grammar induction (Golland et al., 2012;
Huang et al., 2012). We introduce this idea to the unsupervised combinatory categorial gram-
mar induction. Since the system inputs are the golden POS tags in the treebank, we use the
boundary words and the boundary POS tags interchangeably in this paper.

Particularly, in some parse tree T , we consider the boundary POS tags of each constituent and
define the new probabilistic model as

P(T) = PCCG(T)PBDR(T)

=
∏

rule:r∈T

PCCG(r)
∏

span:〈i, j〉∈T

PBDR(σ〈i, j〉|B) (4)

where distribution PCCG is the basic CCG model defined in section 4.1, PBDR is the proposed
boundary model, σ〈i, j〉 means the boundary words of the constituent covered by span 〈i, j〉,
and B is a special nonterminal representing the constituent spans. We denote this model as
basic+bdr. Figure 1 shows a tree example. The boundary probability of this parse tree is

PBDR(T) = P(DT_DT|B)× P(NNS_NNS|B)× P(VBD_VBD|B)× P(RB_RB|B)
× P(DT_NNS|B)× P(VBD_RB|B)× P(DT_RB|B) (5)

1263

TOP

S[<]

N[>]

N/N N

S[<B1]

S\N S\S

DT[The] NNS[man] VBD[ate] RB[quickly]
0 1 2 3 4

Figure 1: A tree example used to illustrate the boundary probability. The CCG rule types are
given in the square brackets next to each nonterminal. Although only POS tags are considered
in the induction model, we also show the words for clarity.

Currently, we restrict that the single special nonterminal B generates all boundary tag pairs.
We have tried to let the boundary pairs depend on the category of tree nodes. For instance,
for span 〈2,4〉 of tree in Figure 1, we model P(VBD_RB|S) rather than P(VBD_RB|B). However,
this category-dependent boundary model performs poor in experiments (not reported in this
paper). The reason might be the data sparsity problem, since there are quite a lot of induced
categories in the grammar.

4.3 Bayesian Models

The EM algorithm may overfit the training data, so we propose the Bayesian model to infer
grammars and tree structures. In the Bayesian models, the generative process is often formu-
lated as the Chinese Restaurant process (CRP) or the Pitman-Yor process (PYP) to encourage
rule reuse and learn compact models (Teh et al., 2006; Pitman and Yor, 1997). Since the PYP
is a generalization of the CRP and has more elegant and controllable behavior over the “long
tail” of probability distributions, we focus on the PYP in this paper.

For each nonterminal category A in CCG, we maintain a cache to store the total number n of
rules expanded with A as parent, the total number of different rule types m, and the counts nk
of each rule that has been generated for k = 1, . . . , m. Initially, all caches are empty, i.e. with
n = m = 0. The parse trees are generated in sequence. For each sentence, the PYP generates
trees in the top-down fashion. For each nonterminal label to be expanded, we consult the
cache associated with that nonterminal and decide whether to choose the kth expanded rule
in the cache, or generate a new rule. The probabilities of these two cases are

Pt(z|zi<n) =

(
ma+b
n+b

if zn+1 = m+ 1
nk−a
n+b

if zn+1 = k, k ∈ {1, · · · , m} (6)

where zi is the cache index of the i th generated rule, a ∈ [0,1] and b ≥ 0 are two category-
associated parameters naming the discount and concentration parameters respectively. Note
that different labels may have different values of a and b. If we decide to generate a new rule,
the new rule is sampled from the base multinomial distribution P0. We also put a Dirichlet
prior on the base distribution and sample the base rule probabilities from the Dirichlet distri-
bution: θ ∼ Dir(θ |α). The above sampling procedures are performed recursively down until
all frontier labels have been expanded to terminals. For CCG induction models described in
previous sections, PYP priors are put on all factored models, although they may have different
hyperparameters.

1264

The joint probability of a particular sequence of indexes z with cached counts (n1, . . . , nm)
under the Pitman-Yor process is

PY (z|a, b) =

∏m
k=1(a(k− 1) + b)

∏nk−1
j=1 (j− a)

∏n−1
i=0 (i + b)

. (7)

The above generative process demonstrates the “rich get richer” dynamics, i.e. previous sam-
pled rules would be sampled more likely in following procedures. It is easy to verify that any
permutation of z1, . . . , zn has the same probability in the Pitman-Yor process, so the Pitman-Yor
process is exchangeable, resulting in efficient sampling methods. Given the parse tree set T ,
we could integrate out the base distribution probabilities to get the joint PYP probability5:

P(T |α, a, b) =
∏
X∈N

Beta(αX+ fX)
Beta(αX)

PY (z(T)|a, b) (8)

where N is the set of nonterminal categories, fX is the vector containing the number of occur-
rences that rules r with X as parent in T , and Beta means the Beta function.

To infer trees and parameters of the PYP model, we apply the collapsed Metropolis-Hastings
algorithm (Hastings, 1970; Johnson et al., 2007) to sample trees from the parse forests. In
detail, we iteratively draw samples for each yield in training corpus in sequence. Assuming
the current tree of the i th sentence is Ti , we first remove this tree from the whole tree set to
obtain T−i , the set of sampled trees except the i th one. Then we draw new tree T ′i from some
proposal distribution Q(T ′i |T−i), and accept the new sampled tree with probability

A(Ti , T ′i) =min
�

1,
P(T ′|α, a, b) Q(Ti |T−i)
P(T |α, a, b) Q(T ′i |T−i)

�
. (9)

In theory, Q could be any distribution if it never assigns zero probability. In practice, the
proposal distribution should be close enough to the true distribution to avoid high rejection
rate. We use the following proposal distribution in experiments:

Q(Ti |T−i) =
1

Z(T−i)

∏
rule:r∈Ti

Pt(zr |zT−i
) P0(r|α)δ(r /∈T−i) (10)

in which Pt is the conditional index probability in Equation 6, and the model needs to consult
the base distribution P0 if it encounters a new rule (δ(r /∈ T−i) = 1). We do not need to
calculate the normalization constant Z(T−i) since it would be cancelled in Equation 9. The
proposal distribution differs from the true distribution in the sense that: the caches are updated
immediately after calculating probabilities of each rule in Ti under the true distribution, while
the caches stay fixed in the proposal distribution evaluation. In experiments, we observe that
only a tiny fraction (less than 1%) of proposals are rejected. This provides evidence that
the proposal distribution works well enough. We use the sampling algorithm described in
(Blunsom and Osborne, 2008) to draw a parse tree from the parse forest according to the
proposal distribution Q.

5For simplicity, we omit probability factorization as if there is only one model. The complete probability expression
is the product of multiple factored PYP probabilities.

1265

5 Experiments

5.1 Datasets and Settings

We carry out experiments on the Wall Street Journal portion of the Penn English Treebank
(Marcus et al., 1993). As the standard data split, we use sections 02-21 as the training set,
section 00 as the development set, and section 23 as the final test set. We remove punc-
tuations and null elements in treebank, as the standard preprocessing step in the previous
unsupervised grammar induction approaches (Klein and Manning, 2002; Cohn et al., 2010;
Bisk and Hockenmaier, 2012). For comparison, we build datasets with sentence lengths no
more than 10 and 20 words after removing punctuations. As the standard machine learning
pipeline, we perform learning and inference on the training set, select model with best perfor-
mance on the development set, and report the result of the selected model on the test set. For
efficiency, we only train and tune parameters on sentences with length no more than 10, but
report performance on longer sentences as well. Table 1 gives the statistics of each dataset.

Dataset
Train Dev Test

sent # word # sent # word # sent # word

PTB10 5,899 41,701 265 1,875 398 2,649
PTB20 - - - - 1,286 16,591

Table 1: Data statistics
For evaluation, the script of CoNLL 2008 shared task6 is used to calculate the Unlabeled At-
tachment Score (UAS) of the system outputs, using the treebank dependency structures as
golden standards. We perform the McNemar’s significant test to compare our proposed models
with the baseline model. Since the original treebank only has the phrase-structure trees, we
use (Johansson and Nugues, 2007)’s code7 to convert the treebank to dependency structures.
In order to compare with existing approaches, we follow (Bisk and Hockenmaier, 2012) to
convert the CCG trees to dependency trees: (1) the modifier categories are treated as the de-
pendents of their heads; (2) the head of the sentence is treated as a dependent of a root node
at position 0; (3) the left part of conjunction is treated as the head of conj, and the conj is
treated as the head of the right part. Figure 2 shows an example.

TOP

S[<]

N[>]

N/N N

S[<B1]

S\N S\S

DT[The] NNS[man] VBD[ate] RB[quickly]
0 1 2 3 4

ROOTROOT DT NNS VBD RB

The man ate quickly

Figure 2: Left: a CCG tree example. Right: the converted dependency tree.

To reduce the model complexity, we restrict that the maximal order of composition rule is 2.
The rule probabilities are initialized uniformly. For EM-based models (basic and basic+bdr),
we add fixed value to expected counts in each E-step as smoothing. We perform maximal
40 EM iterations while stop earlier if the development score starts to drop. In the Bayesian

6Available at: http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=conll2008:software
7Available at: http://nlp.cs.lth.se/software/treebank_converter

1266

inference, we run sampler through the whole training sentences for 400 iterations and use the
last sampled grammars to parse fresh sentences. To model the uncertainty of hyperparameters,
we put an uninformative Beta(1,1) prior on a and a “vague” Gamma(10,0.1) prior on b instead
of setting them empirically. After each iteration, we resample each of hyperparameters from
the posterior distribution of hyperparameters using a slice sampler (Neal, 2003).

5.2 Results

Before presenting the final results, we first examine the effect of smoothing values for EM
models. We test smoothing values from {1,10,20,30,40,50,60,70,80,90,100} and evaluate
the unlabeled attachment scores (UAS) of the basic model and the basic+bdr model on both
the development set and the test set. Note the performance on the test set is only used for
references, the final smoothing value is selected as the one with best performance on the
development set. Experimental results are plotted in Figure 3. We can easily find that the
best smoothing value (with highest dev-score) is 20 for both of these models. The basic+bdr
model achieves significant (at p < 10−3 level) better results (dev: 66.3, tst: 66.7) than the
basic model (dev: 63.3, tst: 62.9) on both the development and test sets when the optimal
smoothing values are selected.

 54

 56

 58

 60

 62

 64

 66

 68

 0 10 20 30 40 50 60 70 80 90 100

un
la

be
le

d
at

ta
ch

m
en

t s
co

re
 (

%
)

smoothing value

dev: basic
tst: basic

dev: basic+bdr
tst: basic+bdr

Figure 3: The effect of smoothing value on development and test set of PTB10

The final results of basic and basic+bdr models, using EM or Pitman-Yor process (PYP)
are shown in Table 2 for comparison. Some existing results (copied from Figure 4(a) in
(Bisk and Hockenmaier, 2012)) are also given in this table. Comparing within the four models
described in this paper, we draw following conclusions:

1. The basic+bdr model achieves significant better results than the basic model under the
EM learning. The boundary words capture lexical information about constituents and
show complementary effectiveness for CCG induction.

2. The Bayesian framework outperforms the EM baseline significantly. This provides evi-
dence that the compact models are preferred in the unsupervised CCG induction.

3. The combination of the boundary model and the Bayesian inference only show slightly
better results than individual components. The reason might be that both the boundary
words and the Bayesian model have the same effects and give high probabilities to those
parse trees with more reused rules.

1267

4. For longer sentences, the proposed methods still outperform baseline model with a large
gap, demonstrating the robustness of our method.

Model PTB10 PTB20

(Klein and Manning, 2004) 47.5 -
(Headden III et al., 2009) 68.8 -
(Spitkovsky et al., 2010) 65.3∗ 53.8∗

(Cohn et al., 2010) 65.9 58.3
(Bisk and Hockenmaier, 2012) 71.5 60.3

(Naseem et al., 2010) 71.9 50.4∗

EM
basic 62.9 49.9

basic+bdr 66.7+ 54.0+

PYP
basic 66.0+ 53.9+

basic+bdr 66.7+ 55.1+

Table 2: Comparison results on the test set with various length limits. Results of existing
approaches are copied from (Bisk and Hockenmaier, 2012). Results with (∗) were obtained
with additional training data. Results with (+) outperform the baseline (basic with EM) results
significantly at p < 10−3 level according to the McNemar’s significant test.

Compared with existing approaches, our models stay in the intermediate level.
Headden III et al. (2009) use rich contexts, words as well as POS tags, and sophisticated
smoothing techniques, which might explain their higher performance than ours on short sen-
tences. Naseem et al. (2010) manually specify some dependency rules in experiments, while
we only use some coarse restrictions on the lexicon and grammar generation. Our models
are mainly based on the previous work (Bisk and Hockenmaier, 2012). The full-EM model
in (Bisk and Hockenmaier, 2012) corresponds to the basic model in our paper. Their reported
results of full-EM are around 55−60 on short sentences, lower than our implementation. How-
ever, the best model in their paper outperforms our models on both short and long sentences.
They achieve the state-of-the-art performance using the k-best EM learning. It should be em-
phasised that the k-best EM learning strategy is still applicable to our proposed basic+bdr
model, which we leave for future work.

5.3 Discussion and Future work

Our method and many previous approaches (Klein and Manning, 2002, 2004;
Bisk and Hockenmaier, 2012) take the golden part-of-speech tags as input. This prac-
tice may reduce data sparsity problem caused by directly modelling words. However, this may
also lose useful lexical information. As reported in (Headden III et al., 2009), incorporating
words with high frequencies (greater than 100 times in their experiments) as well as the
POS tags could improve the induction accuracy for dependency models. In CCG, words may
also help to distinguish lexical categories. For example, the transitive verbs are often tagged
as (S\N)/N and the intransitive verbs often have category S\N. However, these syntactic
differences are not encoded in the Penn treebank POS tags, in which they may both have the
POS tag VBx depending on the tenses. We leave this extension for future work.

Although the simple additive smoothing methods could improve EM results (see Figure 3),
sophisticated smoothing schemes are also applicable (Headden III et al., 2009). Currently, the

1268

final probability is the product of basic CCG model and boundary model. This simple strategy
already shows effectiveness in our experiments. In future work, different interpolation or back-
off methods will be investigated. In addition, the context words have been proved useful for
constituency tree induction (Klein and Manning, 2002; Golland et al., 2012). We could also
integrate the context information to help CCG induction.

The performance of Bayesian model is somehow below our expectation, especially for the ba-
sic+bdr model. Currently, we simply use the grammars sampled at the last iteration to parse
test sentences. Johnson and Goldwater (2009) propose the maximum marginal decoding tech-
nique to obtain more stable results, which we will explore in the future. Furthermore, we do
not elaborately tune hyperparameters of Bayesian model, such as the prior distribution of a, b,
the value of α, etc. Finally, tree nodes tend to be labeled with common and simple categories
in CCGbank (Hockenmaier and Steedman, 2007). We could define probability models over the
number of the categories and the internal arity of categories, and put sparse priors to enforce
compact model.

6 Related work

Unsupervised dependency grammar induction has attracted a lot of research interests. The
dependency model with valence (DMV) (Klein and Manning, 2004; Headden III et al., 2009;
Cohen and Smith, 2009) is one of representative work, in which the valence is explicitly mod-
elled. In contrast, the CCG formalism encodes the functor arity and word orders via syntactic
categories, providing a more syntax-meaningful representation especially for long-range de-
pendencies (Steedman, 2000). Since our work is based on CCG induction, we only present
CCG-related work.

Osborne and Briscoe (1997) propose an unsupervised learning model for CCG induction. They
create a labeled binary tree for each part-of-speech tag sequences in a greedy, bottom-up, in-
cremental manner. The label of each inner node is the label of either the left or right sub-node.
To avoid overfitting, they apply the Minimum Description Length (MDL) principle to learn
compact grammars with minimal length of hypothesis and minimal length of data encoded in
the hypothesis. While our model uses the alternative Bayesian learning method to learn com-
pact grammars. Watkinson and Manandhar (1999) describe a CCG induction model based on
linguistic lexicon generation. The learner is provided with a set of manually defined English
oriented CCG categories, such as the verb-subcategorization. Compared to their work, we ini-
tialize lexicons with more general categories and learn complex categories and grammar rules
automatically. Ponvert (2007) presents a generic algorithm to learn CCG categories. How-
ever, the reported experiments do not show much promising results. Naseem et al. (2010) use
manually-specified linguistic-motivated rules in dependency grammar induction. Variational
Bayesian method is used to estimate the parameters.

The most related work is (Bisk and Hockenmaier, 2012). The grammar generation step de-
scribed in our paper is almost the same as the one in their paper. They compare various EM
settings (full EM, Viterbi EM, and k-best EM) and find that the k-best EM could achieve best
performance. They report the state-of-the-art results for unsupervised dependency grammar
induction. Instead of the k-best EM, we perform the Bayesian inference and use sampling to
estimate parameters. In addition, we exploit the use of rich lexical information and propose
the boundary model to improve CCG induction. It is worth noting that the k-best EM can be
also used for our boundary model, which we leave for future work.

1269

Conclusion

In this paper, we have proposed to incorporate lexical information in the unsupervised CCG
induction. Specifically, an additional boundary model is defined to capture complex language
aspects, in which boundary words are generated from a special symbol independently for each
span covered by tree nodes. Furthermore, we describe the nonparametric Pitman-Yor process
to encourage rule reuse, resulting in compact grammars. Experimental results demonstrate
that both the boundary model and the Bayesian inference outperform the baseline CCG induc-
tion system.

Acknowledgments

We would like to thank Zhixiang Ren for insightful discussions. We would also thank Professor
Julia Hockenmaier for her LATEX package to draw CCG derivations. Thank the anonymous
reviewers for their helpful comments and suggestions.

References

Bisk, Y. and Hockenmaier, J. (2012). Simple robust grammar induction with combinatory
categorial grammar. In Proceedings of the Twenty-Sixth Conference on Artificial Intelligence
(AAAI-12), pages 1643–1649, Toronto, Canada.

Blunsom, P. and Baldwin, T. (2006). Multilingual deep lexical acquisition for HPSGs via
supertagging. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing, pages 164–171, Sydney, Australia.

Blunsom, P. and Cohn, T. (2010). Unsupervised induction of tree substitution grammars for
dependency parsing. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 1204–1213, Cambridge, MA.

Blunsom, P. and Osborne, M. (2008). Probabilistic inference for machine translation. In
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages
215–223, Honolulu, Hawaii.

Bod, R. (2006). An all-subtrees approach to unsupervised parsing. In Proceedings of the
21st International Conference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, pages 865–872, Sydney, Australia.

Boonkwan, P. and Steedman, M. (2011). Grammar induction from text using small syntactic
prototypes. In Proceedings of 5th International Joint Conference on Natural Language Process-
ing, pages 438–446, Chiang Mai, Thailand.

Bos, J., Clark, S., Steedman, M., Curran, J. R., and Hockenmaier, J. (2004). Wide-coverage
semantic representations from a CCG parser. In Proceedings of Coling 2004, pages 1240–1246,
Geneva, Switzerland.

Clark, S. and Curran, J. (2003). Log-linear models for wide-coverage CCG parsing. In Pro-
ceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pages
97–104.

Clark, S. and Curran, J. R. (2007). Wide-coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics, 33(4):493–552.

1270

Cohen, S. and Smith, N. A. (2009). Shared logistic normal distributions for soft parameter ty-
ing in unsupervised grammar induction. In Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for Computational
Linguistics, pages 74–82, Boulder, Colorado.

Cohn, T., Blunsom, P., and Goldwater, S. (2010). Inducing Tree-Substitution grammars. Jour-
nal of Machine Learning Research, 11:3053–3096.

Cohn, T., Goldwater, S., and Blunsom, P. (2009). Inducing compact but accurate tree-
substitution grammars. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational Linguistics,
pages 548–556, Boulder, Colorado.

Golland, D., DeNero, J., and Uszkoreit, J. (2012). A feature-rich constituent context model
for grammar induction. In Proceedings of the 50th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages 17–22, Jeju Island, Korea.

Hassan, H., Sima’an, K., and Way, A. (2007). Supertagged phrase-based statistical machine
translation. In Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, pages 288–295, Prague, Czech Republic.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their appli-
cations. Biometrika, 57(1):97–109.

Headden III, W. P., Johnson, M., and McClosky, D. (2009). Improving unsupervised depen-
dency parsing with richer contexts and smoothing. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 101–109, Boulder, Colorado.

Hockenmaier, J. and Steedman, M. (2002). Generative models for statistical parsing with
combinatory categorial grammar. In Proceedings of 40th Annual Meeting of the Association for
Computational Linguistics, pages 335–342, Philadelphia, Pennsylvania, USA.

Hockenmaier, J. and Steedman, M. (2007). CCGbank: A corpus of CCG derivations and de-
pendency structures extracted from the Penn Treebank. Computational Linguistics, 33(3):355–
396.

Huang, Y., Zhang, M., and Tan, C. L. (2012). Improved constituent context model with
features. In Proceedings of the 26th Pacific Asia Conference on Language, Information and
Computation (to appear), Bali, Indonesia.

Johansson, R. and Nugues, P. (2007). Extended constituent-to-dependency conversion for
English. In Proceedings of the 16th Nordic Conference of Computational Linguistics, pages 105–
112, Tartu, Estonia.

Johnson, M. and Goldwater, S. (2009). Improving nonparameteric bayesian inference: ex-
periments on unsupervised word segmentation with adaptor grammars. In Proceedings of
Human Language Technologies: The 2009 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages 317–325, Boulder, Colorado.

1271

Johnson, M., Griffiths, T. L., and Goldwater, S. (2007). Adaptor grammars: A framework for
specifying compositional nonparametric bayesian models. In Advances in Neural Information
Processing Systems 19, pages 641–648, Cambridge, MA.

Jones, B. K., Johnson, M., and Frank, M. C. (2010). Learning words and their meanings from
unsegmented child-directed speech. In Human Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the Association for Computational Linguistics, pages
501–509, Los Angeles, California.

Klein, D. and Manning, C. (2004). Corpus-based induction of syntactic structure: Models
of dependency and constituency. In Proceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACL’04), Main Volume, pages 478–485, Barcelona, Spain.

Klein, D. and Manning, C. D. (2002). A generative constituent-context model for improved
grammar induction. In Proceedings of 40th Annual Meeting of the Association for Computational
Linguistics, pages 128–135, Philadelphia, Pennsylvania, USA.

Lari, K. and Young, S. J. (1990). The estimation of stochastic context-free grammars using
the Inside-Outside algorithm. Computer Speech and Language, 4:35–56.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated
corpus of English: the Penn Treebank. Computational Linguistics, 19(2):313–330.

Naseem, T., Chen, H., Barzilay, R., and Johnson, M. (2010). Using universal linguistic knowl-
edge to guide grammar induction. In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 1234–1244, Cambridge, MA.

Neal, R. M. (2003). Slice sampling. Annals of Statistics, 31(3):705–767.

Osborne, M. and Briscoe, T. (1997). Learning stochastic categorial grammars. In Proceedings
of CoNLL97: Computational Natural Language Learning, pages 80–87.

Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from
a stable subordinator. Annals of Probability, 25:855–900.

Ponvert, E. (2007). Inducing combinatory categorial grammars with genetic algorithms. In
Proceedings of the ACL 2007 Student Research Workshop, pages 7–12, Prague, Czech Republic.

Seginer, Y. (2007). Fast unsupervised incremental parsing. In Proceedings of the 45th An-
nual Meeting of the Association of Computational Linguistics, pages 384–391, Prague, Czech
Republic.

Spitkovsky, V. I., Alshawi, H., Jurafsky, D., and Manning, C. D. (2010). Viterbi training im-
proves unsupervised dependency parsing. In Proceedings of the Fourteenth Conference on Com-
putational Natural Language Learning, pages 9–17, Uppsala, Sweden.

Steedman, M. (2000). The Syntactic Process. Cambridge, MA, USA.

Steedman, M. and Baldridge, J. (2011). Combinatory categorial grammar. In Borsley, R. and
Börjars, K., editors, Non-Transformational Syntax: Formal and Explicit Models of Grammar,
pages 181–224.

1272

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet processes.
Journal of the American Statistical Association, 101(476):1566–1581.

van Zaanen, M. (2000). ABL: Alignment-based learning. In Proceedings of the 18th Inter-
national Conference on Computational Linguistics (Coling 2000), volume 2, pages 961–967,
Saarbrücken, Germany.

Vijay-Shanker, K. and Weir, D. (1994). The equivalence of four extensions of context-free
grammars. Mathematical Systems Theory, 27(6):511–546.

Watkinson, S. and Manandhar, S. (1999). Unsupervised lexical learning with categorial gram-
mars using the LLL corpus. In Proceedings of the 1st Workshop on Learning Language in Logic.

Xiong, D., Zhang, M., and Li, H. (2010). Learning translation boundaries for phrase-based
decoding. In Human Language Technologies: The 2010 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, pages 136–144, Los Angeles,
California.

Zettlemoyer, L. and Collins, M. (2007). Online learning of relaxed CCG grammars for parsing
to logical form. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages
678–687, Prague, Czech Republic.

Zhang, Y. and Clark, S. (2011). Syntax-based grammaticality improvement using CCG and
guided search. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 1147–1157, Edinburgh, Scotland, UK.

1273

