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Abstract
Coreference resolution is the problem of clustering mentions into entities and is very critical for
natural language understanding. This paper studies the problem of coreference resolution in the
context of the newly emerging domain of Electronic Health Records (EHRs). The commonly used
“best-link” model for coreference resolution considers only the scores from a pairwise classifier
in selecting the best antecedent. In this paper, we extend this model to include several constraints
derived from surface-form of the mentions and the context in which they appear. Another major
contribution of this paper is to show the use of domain-specific knowledge sources, mention parsing
and clinical descriptors in deriving features which contribute to improved coreference resolution
performance. We present experiments on 4 different clinical datasets illustrating that our approach
outperforms a strong baseline and a state-of-the-art system by a wide margin.

Keywords: Natural Language Processing, Information Extraction, Coreference Resolution, Elec-
tronic Health Records, Knowledge Based Systems.
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1 Introduction
The HITECH (Health Information Technology for Economic and Clinical Health) Act, part of the
2009 economic stimulus package (American Recovery and Reinvestment Act) passed by the US
Congress, aims at inducing more physicians to adopt Electronic Health Records (EHRs). An EHR
is an evolving concept defined as a systematic collection of electronic health information about
individual patient. Ability to automatically extract information from EHRs lies at the heart of several
applications.

This paper addresses the task of coreference resolution for EHRs. Coreference resolution is the task
of finding referring expressions in a text that refer to the same entity, i.e., finding expressions that
corefer. The set of coreferring expressions is called as a coreference chain. Consider the following
text sampled from one of the EHRs in the corpus used by us:

This 63-year-old man had [malignant fibrous histiocytoma of duodenum], discovered in 02/95.
Other than [a mass in the duodenum], the patient was also diagnosed with anemia. A
[leiomyosarcoma] was resected after embolization of the splenic artery. However, [it] could not
be completely excised; moreover [the tumor] metastasized to the liver as was discovered on
follow up scan in 06/95.

In the above text, all the phrases which are shown in brackets refer to the same entity and hence form
a coreference chain. It is clear that identifying such coreference chains requires a lot of medical
knowledge. For example, we need to know that “mass” can refer to a “malignant histiocytoma”.

Most of the work on coreference resolution has focussed on the news text. Several different
architectures have been proposed for coreference resolution. Recently, entity-based models for
coreference resolution have been proposed. Such approaches try to directly model the entities in
the text and usually involve some kind of global inference and tend to be quite complex. However,
most of the best results on coreference resolution were achieved with simpler architectures which
use a pairwise classifier between mentions and a decoding strategy like “closest-first” or “best-link”
to first find the best antecedent for every mention. This step is then followed up by an inference
procedure in which coreference chains are formed (Chang et al., 2011; Pradhan et al., 2011).

In this paper, we extend the “best-link” model to include several constraints derived from surface-
form of the mentions and the context in which they appear. Another contribution of this paper is to
show the use of domain-specific knowledge sources (like UMLS1, MetaMap), mention parsing and
clinical descriptors (obtained from medical ontologies) in deriving the features which are helpful for
coreference resolution. In clinical Information Extraction (IE), researchers often map clinical text to
UMLS concepts (Zheng et al., 2012; Rink et al., 2012). But such mapping alone doesn’t allow an
IE system to exploit the useful information contained in the parent trees of the concepts. Clinical
descriptors designed by us overcome this limitation. We use two medical ontologies, MeSH2 and
SNOMED CT3 to design our descriptors.

We conducted experiments on four different clinical datasets. Our results show that knowledge
sources help in improving the recall and constraints help to increase the precision of the system.
Knowledge and constraints used by us helped us to achieve significant performance improvements
over a strong baseline derived from existing state-of-the-art approaches.

1http://www.nlm.nih.gov/research/umls/
2http://www.nlm.nih.gov/mesh/meshhome.html
3http://www.ihtsdo.org/snomed-ct/
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To summarize, the key contributions of our paper are as follows:

• This paper studies coreference resolution on the new and important domain of EHRs.
• This paper presents different knowledge sources which would be useful for Information

Extraction in medical and clinical domains. We use medical ontologies (MeSH, SNOMED
CT) to get clinical descriptors which encode useful information contained in the parent trees
of the concepts.

• We propose a rich local model to find the best antecedent.
• We use mention parsing to obtain a semantic representation of the mentions. Similar technique

can also be used for other domains.
• Our system outperforms a strong baseline on four different clinical datasets.

2 Task Description
Coreference resolution aims at clustering together textual mentions within a single document based
on underlying referent entities. For our experiments, we used the datasets provided by i2b2 team
as part of coreference challenge. We use the same problem definition as was specified in the i2b2
coreference challenge. Mentions have already been identified and classified into 4 types : test
(TEST), treatment (TRE), problem (PROB) and pronoun (PRON). Coreference relation can exist
only within the mentions of same type. However, PRON mentions can corefer with any other
mention. Given the entity mentions along with the types, the aim is to build coreference chains for
the first 3 types: TEST, TRE and PROB. Since PRON mentions can corefer with the mentions of
other types, there are no separate pronoun (PRON) chains.

3 Coreference Model
In this paper, we view coreference resolution as a graph problem: Given a set of mentions and
their context as nodes, generate a set of edges such that any two mentions that belong in the same
equivalence class are connected by some path in the graph. We construct this entity-mention graph
by finding out the best antecedent of each given mention (anaphor) such that the antecedent belongs
to the same equivalence class as the anaphor. The “Best-Link” strategy (Ng and Cardie, 2002;
Bengtson and Roth, 2008; Chang et al., 2011) for selecting the antecedent of a mention chooses as
the antecedent that candidate which gets the maximum score according to a pairwise coreference
function pc. We extend the “Best-Link” strategy by including several constraints in its objective
function as shown below.

3.1 Decision Model: Constrained Best-Link
Given a document d and a pairwise coreference scoring function pc that maps an ordered pair of
mentions to a value indicating the probability that they are coreferential, we generate a coreference
graph Gd according to the following decision model:

For each mention mi in document d, let Bmi
be the set of mentions appearing before mi in d. Thus,

Bmi
= {m1, m2, ..., mi−1}. Let a be the highest scoring antecedent. Then, we have:

a = argmax
m j∈Bmi

scorei(m j)

= argmax
m j∈Bmi

k1 · pc(m j , mi)− d(m j , mi) +
L∑

l=1

Cl(m j , mi) (1)
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In the above equation, d(m j , mi) refers to the normalized distance between m j and mi which takes
values between 0 and 1. In equation (1), Cl refers to l th constraint and is defined as follows (for all
values of l):

Cl(m j , mi) =
�

0 if l th constraint is satisfied
−pl otherwise (2)

If scorei(a) is greater than a threshold δ, then we add the edge (a, mi) to the coreference graph Gd .
Threshold parameter δ is chosen to be k1

2
. Value of pc(m j , mi) lies between 0 and 1. The value

of k1 is chosen to be sufficiently greater than 1 so that the pairwise classifier is given preference
over the distance term in choosing the best antecedent. But if the pc values of any two candidates
are almost similar, then the antecedent which is closer to the anaphor gets the higher score because
of the distance term in Equation (1). Thus, our decision model combines the advantages of both
“best-link” and “closest-first” models which are generally used for coreference resolution. Setting
k1 =∞ and L = 0 reduces our model to the standard “best-link” decision model.

pl is the penalty associated with the l th constraint. Thus, different constraints can have different
penalties. Higher the penalty associated with the constraint, the stronger it is enforced. If 0< pl <

k1

2
,

then the constraint is soft because violation of such constraint by a mention pair doesn’t necessarily
rule it out. But if pl >

k1

2
, then the constraint becomes hard.

The resulting graph produced by the decoding technique mentioned above contains connected
components, each representing one equivalence class, with all the mentions in the component
referring to the same entity. Equivalence classes are determined by taking the transitive closure of
all the links.

3.2 Pairwise Coreference Function
We train 4 classifiers, one each for TEST, TRE, PROB and PRON classes. Each of these classifiers
takes as input an ordered pair of mentions (a, m) such that a precedes m in the document, and
produces as output a value that is interpreted as the conditional probability that a and m belong in
the same equivalence class. For any mention-pair (a, m), the classifier is chosen based on the type
of mention m.

For each mention m we select from m’s equivalence class the closest preceding mention a and
present the pair (a, m) as a positive training example to the classifier which corresponds to the type
of mention m. For each m, we generate negative examples (a, m) for all mentions a that precede m
and are not in the same equivalence class.

We learn the pairwise classifiers using LIBSVM package (Chang and Lin, 2011).

4 Baseline
In this section, we describe the baseline system used by us. We designed the baseline system based
on the existing state-of-the-art coreference systems which use pairwise models (Bengtson and Roth
2008; Haghighi and Klein 2009). Baseline system uses the coreference model as described in the
previous section. However, there are no constraints in the baseline system. The features used for
training the pairwise classifier have been described below. All the features used by us take only two
values: 1 (if the feature is active) or 0 (if the feature is not active).

4.1 Lexical Features
Lexical features indicate whether two strings share some property. These features are listed below:
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• Both the mentions have identical surface forms (i.e. ex tentmi
== ex tentm j

).
• Surface form of one of the mentions is a proper substring of that of another.
• Both the mentions share the same head word.

4.2 Syntactic Features
We check for the presence of several syntactic constructs among the mentions and generate the
following features which tell whether or not the given mention pair satisfies the constructs:

• Apposition: Two noun phrases (NPs) are appositive when they are placed side-by-side with
one element serving to define or modify the other e.g. In a recent examination, the patient
was diagnosed with [medulloblastoma], [a malignant brain tumor].

• Predicate Nominative: The predicate nominative is the noun following a linking verb that
restates or stands for the subject e.g. [Coronary Arteriosclerosis] is a [heart disease] which
happens when the coronary arteries become narrowed.

• Relative Pronoun: It is a pronoun that modifies the head of the antecedent NP e.g. After
discussion , an [abdominal CT scan] was obtained [which] revealed diffuse metastatic lesions
of the ribs .

4.3 Semantic Features
Some of the coreferential mention pairs have similar but not identical heads. To find out whether
any two words are similar or not requires semantic knowledge. Wordnet has been extensively used
as a source of semantic knowledge for general English text. We generate the following two features
from Wordnet:

• Wordnet-head-match: We get the synsets of heads of both the mentions and see whether the
heads share any common synset. For example, the words hemorrhage and bleeding share the
same synset which refers to the flow of blood from a ruptured blood vessel.

• Wordnet-head-hypernyms-match: Some closely related words (like epistaxis and hemorrhage)
do not share any common synset. However, if we consider the parents (or hypernyms) of the
synsets of such words in the Wordnet hierarchy, we can see that the two words are similar. We
take only the immediate hypernyms of the synsets. Inclusion of hypernyms which are more
than 1 level above the synsets of the words leads to over-generalization. For example, we may
get that nausea and anemia are coreferent which is actually not true.

4.4 Distance-Based Features
We used the following distance-based features:

• Adjacent-Mentions: This feature is active if there is no intervening mention between the given
mentions which has the same type as the mentions under consideration.

• Distant-Mentions: This feature is active if the two mentions are separated by more than 2
sentences.

5 Using Domain-Specific Knowledge
One of the major limitations of the baseline system is that it lacks domain-specific knowledge. In
medical terminology, same concept can be represented in several different ways. For example,
“headache”, “cranial pain” and “cephalgia” all refer to the same concept. Similarly, “Atrial Fibril-
lation”, “AF” and “AFib” also refer to the same concept. The baseline system is not sufficient to
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her [cancer] her [malignancy]

concept: Cancer Genus (C0998265)
parents: Cancridae (C0998264)

concept: Primary Malignant Neoplasm (C1306459)
parents: Tumor Morphology (C0474796)

concept: Malignant Neoplasms (C0006826)
parents: Unspecified Neoplasms (C0541649)

M
ap

lis
t

concept: Primary Malignant Neoplasm (C1306459)
parents: Tumor Morphology (C0474796)

concept: Malignant Neoplasms (C0006826)
parents: Unspecified Neoplasms (C0541649)

M
ap

lis
t

span1 span2

Note: spans and 
corresponding concepts are 

generated by MetaMap

Figure 1: This figure shows the UMLS mappings for two mentions “her cancer” and “her malig-
nancy”. The terms “cancer” and “malignancy” have at least one common concept. Our matching
procedure based on UMLS correctly predicts the given mentions to be coreferent.

address the ambiguity and variability that exists in medical terminology. To improve the perfor-
mance of coreference resolution, we extended the baseline system by incorporating domain-specific
knowledge into it.

5.1 UMLS and MetaMap
The UMLS (UMLS, 2012), or Unified Medical Language System, is a set of files and software that
brings together many health and biomedical vocabularies. MetaMap (Aronson and Lang, 2010)
is a configurable program which maps biomedical text to the UMLS Metathesaurus. We use the
mapping provided by MetaMap to represent the mentions in a standard way which allows for
effective matching of the mentions. We find the parents of concepts using the Web Service provided
by UTS (UTS, 2012) (UMLS Technology Services).

Matching Mentions Using UMLS: We would refer to the surface forms of the two mentions by s1
and s2. First, we remove the stopwords from the given strings and then process the resulting strings
using MetaMap and thus, get the mappings of the mentions to UMLS concepts. Next, we check
whether any two spans (given by MetaMap) of s1 and s2 are equivalent. Two spans are considered
equivalent if they share the same UMLS concepts (or parents of UMLS concepts). Whenever we
find two equivalent spans, we remove them from s1 and s2. Finally, we check whether the resulting
strings s1 and s2 match trivially. Two strings match trivially if they are identical or one of them is a
substring of the other.

Consider Figure 1 for an example. This figure shows the UMLS mappings for two mentions “her
cancer” and “her malignancy”. “her” is considered as a stopword and is first removed from both
the strings. Since the two spans “cancer” and “malignancy” share same UMLS concepts, they are
equivalent. So, we remove “cancer” and “malignancy” from the two strings. The resulting strings
are both empty and are considered to be matching.

Features Derived: Based on the matching procedure described above, we derive the following two
features:

• UMLS-Match: In this feature, we do not consider the parents of the concepts during the
matching

• UMLS-Match-Parents: In this feature, parents of the concepts are also considered during the
matching
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5.2 Mention Parsing
We parsed the mentions to extract the components like Modifiers, Body Parts and Anatomical Terms
of location (ATs). We did not require exact match for these extracted components. We just specified
that these components should not be incompatible with each other. The remaining portions of the
surface forms of mentions were canonicalized and matching procedure described in Section 5.1 was
used to determine whether they matched. Figure 2 shows an example where the structures obtained
by parsing the two mentions are matching to one another.

Canonicalization referred to above involves the following two steps:

• Expanding the abbreviations: Clinical narratives use a lot of abbreviations. A few examples
are: mri (magnetic resonance imaging), copd (chronic obstructive pulmonary disease) etc.
Abbreviations were expanded to their full forms as a normalization step. We collected
abbreviations from several sources like training data, Wikipedia4, Medilexicon5 etc. For
ambiguous abbreviations, we considered all possible expansions. If a match was found using
any of the expansions, then coreference pair was considered valid.

• Converting Hyponyms to Hypernyms: During preprocessing, we converted some of the
common hyponyms to the corresponding hypernyms. Examples of such conversions are:
chemotherapy→ therapy, hemicolectomy→ colectomy. Such conversions were found to be
very helpful because it is a common practice in clinical documents to refer to some of the
problems and treatments introduced earlier in the document with their more general names
later on. These hyponym-hypernym pairs were collected from the unannotated training data
in an unsupervised setting.

Features Derived: Following feature was derived from mention parsing:

• Mention-Parsing: This feature is true for the mention pairs which match according to the
mention parsing procedure described above.

5.3 Clinical Descriptors

MeSH6 (Medical Subject Headings) is the National Library of Medicine’s controlled vocabulary
thesaurus. It consists of sets of terms in a hierarchical structure that permits searching at various
levels of specificity. We obtain MeSH descriptor for a concept in the following way:

1. First of all, we get all the paths from the concept to the root of MeSH hierarchy. In general,
there can be more than 1 paths.

2. Then we construct one list which consists of the top 4 parents of all the paths obtained in Step
1.

3. The list obtained in step 2 is pruned where more preference is given to those parents which
appear more frequently.

4. The final list obtained in step 3 is the MeSH descriptor of the concept.

Similar procedure is used to obtain the SNOMED CT7 descriptor of a concept. SNOMED CT
(SNOMED Clinical Terms) is yet another medical ontology which consists of the most com-
prehensive, multilingual clinical healthcare terminology in the world. SNOMED CT is owned,

4http://en.wikipedia.org/wiki/List_of_medical_abbreviations
5http://www.medilexicon.com/medicalabbreviations.php
6http://www.nlm.nih.gov/mesh/meshhome.html
7http://www.ihtsdo.org/snomed-ct/
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poorly differentiated 
malignant neoplasm of 

the cervix

metastatic 
cervical cancer

Modifiers:
poorly, differentiated

Body Part:
cervix

Remaining String:
malignant neoplasm

(C1306459)
Stopwords:

of, the

Modifiers:
metastatic

Remaining String:
cancer

(C1306459)

Match Body Part:
cervix

Stopwords:
NULL

Figure 2: This figure shows the structures obtained by the mention parsing of two mentions shown
on the top of the figure. Since the two structures match one another, we predict the two mentions to
be coreferent.

maintained and distributed by the International Health Terminology Standard Development Organ-
isation (IHTSDO). Figure 3 and Figure 4 show two different paths in MeSH and SNOMED CT
parent trees for the same concept “Myocardial Infarction”. We found that, in general, SNOMED CT
gives much more paths (from concept to root of hierarchy) than MeSH. Some concepts in SNOMED
CT have more than 300 possible paths to the root of hierarchy.

Features Derived: Based on the clinical descriptors described above, we derive the following two
features:

• MeSH-Match: This feature is active if the Mesh descriptors of two concepts are the same
• SNOMEDCT-Match: This feature is active if the SNOMED CT descriptors of two concepts

are the same

6 Description of Constraints

Constraints are used to model domain knowledge and they refer to those conditions which, if not
satisfied, strongly indicate that the given mention pair is not coreferential. Features, on the other
hand, can be more vague and don’t necessarily provide such a strong clue. Constraints are applied
only during the inference phase and not the learning phase. So, constraints can be added or removed
without having to retrain the classifiers. Even if a particular constraint is not seen very often in
the training data, it can still be very useful at the test time if the testing data contains cases where
the constraint is applicable. This is a clear advantage of modeling constraints separately from the
features. We divide the constraints in two categories depending on whether the constraint is derived
from the surface form of the mentions or from the context in which the mentions occur. Constraints
used by us are described in the following subsections. These constraints were obtained by the
manual examination of small portion of training data.
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Myocardial Infarction Myocardial Infarction

Figure 3: Figure showing two different paths in MeSH parent tree for the concept “Myocardial
Infarction”

Myocardial Infarction
Myocardial Infarction

Myocardial Infarction

Figure 4: Figure showing two different paths in SNOMED CT parent tree for the concept “Myocar-
dial Infarction”

6.1 Surface Form Constraints
Following surface form constraints were used by us:

• Length Constraint: Surface form of both the mentions must be at least 2 characters long.
• Modifier Constraint: Mentions should not have incompatible modifiers e.g. “small/large”
• Body Parts Constraint: If body parts (like chest, arm, head) are specified, they should not be

incompatible.
• Anatomical Terms Constraint: If anatomical terms8 (like proximal, anterior, dorsal) are

specified, they should not be incompatible.
• Popular Head Constraint: Certain head words like “disease” occur very commonly in the

dataset. Mentions which have same popular head are considered coreferential only if the
classifier predicts the mentions to be coreferential even after removing the heads from the
mentions.

• Number Constraint: Two mentions must agree in number.
• Temporal Constraint: If only one of the mentions contains the word “follow-up” or “repeat”,

then the mention pair is not considered coreferential because the two mentions refer to tests
or treatments which have been done at different times.

8http://en.wikipedia.org/wiki/Anatomical_terms_of_location
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6.2 Contextual Constraints
Following contextual constraints were used by us:

• Family History: If the left context of any mention (in a window of size 4) contains the phrase
“family history”, then the mention pair is not considered coreferential because one of the
mentions refers to some family member of the patient and not the patient himself. Window
size was determined using cross-validation on the training set.

• Negation Constraint: None of the mentions should be present in a negated form.
• PRN Constraint: Problem mentions which have “p.r.n.” as the prefix can’t participate in

coreference relation because such mentions refer to hypothetical problems and not the real
problems. For example, “p.r.n. headache” means “if the headache arises ...”.

• TEST Constraint: We observed from the documents in the training data that the TEST
mentions which appear under the heading “LABORATORY DATA” generally don’t participate
in coreference.

Other than the above mentioned constraints, following additional constraint was used to disallow
coreference chains beginning with pronouns.

• In Equation (1), if m j is a pronoun, then there must exist some mention mk with k < j such
that mk is a valid antecedent of m j .

7 Experimental Setup
Datasets: For our experiments, we used the coreference datasets made available by i2b2 team as part
of 2011 i2b2 challenge. The datasets consist of EHRs from three different organizations: Partners
HealthCare (Part), Beth Israel Deaconess Medical Center (Beth) and University of Pittsburgh (Pit).
The data from University of Pittsburgh is divided into 2 parts, namely Discharge and Progress
records. All records have been fully de-identified and manually annotated for coreference. This
gave us a total of 4 datasets. We would refer to these datasets as Part, Beth, PitD and PitP in the
following discussion.

The total number of documents in the training set of Part, Beth, PitD and PitP are 136, 115, 119
and 122 respectively. Test set of Part, Beth, PitD and PitP contains 94, 79, 77 and 72 documents
respectively. For more information about the datasets, please refer to Uzuner et al. (Uzuner et al.,
2012). We used B-cubed (Bagga and Baldwin, 1998), MUC (Vilain et al., 1995) and CEAF (Luo,
2005) as the evaluation metrics in our experiments.

Choice of Parameters: We use cross-validation on the training data to determine the system
parameters. In Equation (1), we set k1 = 100. With this choice of k1, distance term becomes
significant only if the scores given by pairwise classifier for different mention pairs differ by less
than 0.01. Since all our constraints are important to be enforced, we chose pl = 100 in Equation (2)
for all values of l. This choice of penalty parameters makes all the constraints hard.

8 Results
Table 1 compares the performance of four systems (1) Baseline (B), (2) Baseline + Knowledge (BK),
(3) Baseline + Knowledge + Constraints (BKC) and (4) Baseline + Constraints (BC). We compare
the performance of these systems for Test, Treatment and Problem categories on 4 different datasets,
namely, Part, Beth, PitD and PitP. Table 1 reports precision (P), recall (R) and F1 scores for MUC
evaluation metric. For B-cubed and CEAF Evaluation metrics, we only show the F1 scores because
of space limitation. Please note that there are no separate scores for PRON category because there
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are no separate PRON chains. PRON mentions are included within the TEST, TRE and PROB
chains. Results shown in Table 1 are quite interesting and are explained below.

It is interesting to note that adding knowledge to the system always leads to higher recall values.
On the other hand, addition of constraints always leads to higher precision values. Next, we note
that different metrics behave differently in evaluating the performance of the systems. B-cubed
metric gives higher F1 scores that CEAF metric which in turn gives higher F1 scores than MUC
metric. This is because of the presence of large number of singletons in the corpora. B-cubed metric
highly awards the correct prediction of singletons. MUC, on the other hand, is totally insensitive to
singletons. CEAF is intermediate between B-cubed and MUC as far as singletons are concerned.

Next, we note the following major points about each category of mentions. For statistical significance
tests, Bootstrap Resampling Test (Koehn, 2004) was used at p = 0.05.

1. Test: For Test mentions, the best configuration is Baseline+Constraints (BC). For MUC metric,
both BKC and BC performed the best for 2 corpora each. However, for B-cubed and CEAF
evaluation metrics, BC performed the best for all the corpora. Hence, overall, we can say that
BC is the best configuration for Test mentions. This is because of the fact that coreference
for Test mentions (like “his ct scan”, “a mammogram” etc.) can generally be easily predicted
simply by looking at the surface forms. Also, many of the Test coreference chains are quite
short with only 2-3 mentions which occur close to one another. So, knowledge is not so
helpful for Test mentions.

2. Treatment: For Treatment mentions, the best configuration is Baseline+Knowledge (BK).
This is clearly evident from MUC metric. Only for Beth corpus, BKC performed better than
BK but the difference is not statistically significant (67.8 vs 67.9). For B-cubed and CEAF
evaluation metrics, the maximum F1 scores for Treatment category are quite close to Baseline
scores and hence, the results are not statistically significant. Thus, B-cubed and CEAF metrics
do not help much in predicting which system is better for Treatment mentions.

3. Problem: For Problem mentions, the best system is Baseline+Knowledge+Constraints (BKC).
This is clearly evident from B-cubed and CEAF Evaluation metrics. For MUC evaluation
metric, BK performed better than BKC for 2 corpora. However, the difference in such cases is
not statistically significant (69.1 vs 69.3 and 58.3 vs 58.4). Thus, we see that both, knowledge
and constraints, benefit Problem mentions. This is due to the fact that Problem mentions, in
general are quite long and complicated. Problem mentions generally occur with modifiers and
have variegated surface forms. For example, “the patient’s low potassium level” is coreferrent
with “postoperatively hypokalemia”.

Finally, in Table 2, we show the comparison of our system with a state-of-the-art system, Ware et
al. (Ware et al., 2012), which used same test settings as ours. The numbers reported in Table 2 refer
to the unweighted average of Bcubed, MUC and CEAF F1 scores computed across all the 4 corpora.
We chose unweighted average for comparison because it was the official metric of i2b2 2011 shared
task on coreference. We see from this table that our system consistently outperformed Ware et al.’s
system for all categories of mentions.

9 Error Analysis
Table 3 shows the number of pairwise errors produced by our system on a portion of the test dataset.
Rows indicate types of antecedent; columns are mention types. Each cell shows the number of
precision/recall errors for that configuration. The total number of gold links is 2,252. We see that
our system makes more precision errors than the recall errors. This is also confirmed by the results
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MUC Evaluation
B BK BKC BC

P R F1 P R F1 P R F1 P R F1
Test

Part 30.4 84.8 44.8 29.3 88.8 44.0 32.4 85.8 47.0 33.8 83.8 48.2
Beth 13.2 70.2 22.2 13.9 77.8 23.6 16.3 71.7 26.5 16.0 67.5 25.9
PitD 29.4 82.7 43.4 28.9 86.3 43.3 30.4 81.0 44.2 30.9 79.2 44.5
PitP 25.1 79.3 38.1 25.7 86.0 39.5 28.6 80.2 42.2 27.4 74.4 40.1

Treatment
Part 58.1 81.4 67.8 57.7 86.0 69.0 58.1 83.1 68.4 58.1 79.4 67.1
Beth 57.9 79.2 66.9 57.4 82.7 67.8 58.5 81.0 67.9 58.5 78.0 66.9
PitD 51.0 72.1 59.7 51.7 77.4 62.0 52.4 74.7 61.6 51.3 70.9 59.5
PitP 55.8 72.2 63.0 55.4 76.5 64.2 55.9 74.7 64.0 56.0 71.2 62.7

Problem
Part 54.6 72.8 62.4 55.0 80.8 65.5 57.8 77.4 66.2 56.6 70.8 62.9
Beth 60.0 70.1 64.6 60.1 81.8 69.3 62.2 77.7 69.1 61.1 67.7 64.3
PitD 54.0 75.9 63.1 55.3 85.3 67.1 57.3 81.8 67.4 55.5 73.9 63.4
PitP 45.5 73.1 56.1 46.0 80.1 58.4 46.5 78.2 58.3 45.8 71.7 55.9

(a) MUC Evaluation

B-Cubed Evaluation CEAF Evaluation
B BK BKC BC B BK BKC BC
F1 F1 F1 F1 F1 F1 F1 F1

Test
Part 93.0 92.5 93.4 93.8 84.5 82.7 85.9 87.4
Beth 89.8 89.4 90.7 90.9 66.9 65.1 73.2 74.4
PitD 88.4 87.7 88.9 89.3 76.7 75.0 78.7 79.8
PitP 92.9 92.6 93.2 93.2 83.3 82.4 85.4 85.6

Treatment
Part 92.8 92.8 92.8 92.8 85.9 85.2 85.7 86.0
Beth 92.5 92.4 92.4 92.5 81.8 81.2 81.9 82.1
PitD 91.2 91.5 91.4 91.2 84.8 84.7 84.9 84.9
PitP 91.6 91.6 91.7 91.6 84.3 84.0 84.3 84.4

Problem
Part 92.3 92.3 92.9 92.6 84.9 84.8 86.6 86.1
Beth 92.2 92.3 92.7 92.3 83.7 83.8 85.2 84.3
PitD 90.5 90.6 91.1 90.8 83.1 83.6 85.6 84.5
PitP 93.7 93.6 93.8 93.9 85.3 85.1 85.6 85.6

(b) B-cubed and CEAF Evaluation

Table 1: This table compares the performance of four systems: (1) Baseline (B), (2) Baseline +
Knowledge (BK), (3) Baseline + Knowledge + Constraints (BKC) and (4) Baseline + Constraints
(BC). Part (a) of table reports Precision, Recall and F1 scores for MUC evaluation metric for TEST,
TRE and PROB categories on 4 different datasets. Part (b) shows the F1 scores for B-cubed and
CEAF evaluation metrics. For detailed discussion of the results, please refer to Section 8.
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Avg of B3, MUC, CEAF F1
Test Treatment Problem

Ware et al. 68.4 79.4 80.8
This Paper 69.1 80.7 81.6

Table 2: This table shows the comparison of system presented in this paper with a state-of-the-art
system, Ware et al. The numbers refer to the unweighted average of Bcubed, MUC and CEAF F1
scores computed across all the 4 corpora.

TEST TRE PROB PRON
TEST 92/60 - - 22/12
TRE - 187/186 - 57/14

PROB - - 320/293 70/21
PRON 32/10 47/13 97/37 20/7
Total 124/70 234/199 417/330 169/54

Table 3: This table shows the number of pairwise errors produced by our system on a portion of the
test dataset. Rows indicate types of antecedent; columns are mention types. Each cell shows the
number of precision/recall errors for that configuration. The total number of gold links is 2,252.

in Table 1. Error analysis of our system reveals that its precision can be improved by analyzing
the context of the mentions more deeply. For example, it would be helpful to know the time (if
mentioned) at which a particular test was conducted. It would be also beneficial to know whether
a particular problem is mentioned in relation to the patient or one of his/her family members.
On inspection, we found that our system made recall errors only on very difficult mention pairs.
Predicting coreference relation among such mention pairs requires a lot of reasoning.

10 Related Work
For news text, several different architectures have been proposed for coreference resolution. Systems
have been developed which allow for entity-level features or features over sets of noun phrases (Cu-
lotta et al., 2007). Such methods generally involve some kind of global inference which is difficult to
implement and may also be intractable. Research (Finkel and Manning, 2008; Haghighi and Klein,
2007; Poon and Domingos, 2008) has also been carried out to explore how to reconcile pairwise
decisions to form coherent clusters.

However, pairwise models with rich knowledge base have been shown to be very successful in
both supervised and unsupervised setups (Bengtson and Roth, 2008; Haghighi and Klein, 2009).
An important step in such models is to find the antecedent for each mention. For selecting the
antecedent, “best-link” decoding strategy has been shown to give better results than “closest-first”.
In this paper, we extended the “best-link” strategy used by researchers by incorporating other factors
like distance between mentions, several constraints etc. during the inference step.

There has been an increasing interest in knowledge-rich coreference resolution (Uryupina et al.,
2011; Rahman and Ng, 2011; Bryl et al., 2010; Ng, 2010; Ponzetto and Strube, 2006; Bean and
Riloff, 2004). Wikipedia is one of the most common knowledge resources that have been used
by researchers. However, Wikipedia is not very good for clinical text because it doesn’t have
sufficient coverage of medical terms and also lacks precision. In this paper, we used domain-specific
knowledge sources like UMLS, MeSH and SNOMED CT to improve coreference resolution in clinical
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domain.

One of the earliest works in coreference resolution in clinical domain is that of Zheng et al. (Zheng
et al., 2011). In this work, authors review recent advances in general purpose coreference resolution
to lay the foundation for methodologies in the clinical domain. Later, Zheng et al. (Zheng et al.,
2012) describe a simple pairwise classification technique for coreference resolution in clinical
domain and got an overall B-cubed score of 0.69 and MUC score of 0.35. Bodnari et al. (Bodnari
et al., 2012) and Jindal et al. (Jindal and Roth, 2012) also use a pairwise classification technique for
clinical coreference resolution and use UMLS to get some of their semantic features. However, they
don’t use the concepts’ parents information available in UMLS. Uzuner et al. (Uzuner et al., 2012)
give a brief overview of several systems which participated in 2012 i2b2 coreference challenge.
Most of the systems submitted in the challenge were rule-based. Rink et al. (Rink et al., 2012)
used a multi-pass sieve architecture which is similar to the one developed by Raghunathan et
al. (Raghunathan et al., 2010). Xu et al. (Xu et al., 2012) developed an effective strategy for pronoun
resolution where they first determined the type of the pronoun and then chose the closest preceding
concept of the same type as the antecedent. All these works assumed mentions’ boundaries (along
with their types) to be given just like ours.

Conclusion
Electronic Health Records are becoming increasingly important and their automatic analysis lies at
the heart of several applications. This paper presented a system for coreference resolution for EHRs.
In this paper, we proposed a rich model for selecting the best antecedent which involves inference
using pairwise classifier scores and several constraints derived from surface-form of the mentions
and the context in which they appear. We also showed the importance of domain-specific knowledge
sources and clinical descriptors for achieving good performance in coreference resolution. While the
knowledge sources used by us helped to improve the recall, constraints were helpful to increase the
precision of system. Our experimental results show that different mention types benefit to different
extent from knowledge and constraints. Our system consistently outperformed a strong baseline and
a state-of-the-art system on four different datasets.
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