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ABSTRACT 

This paper presents a supervised machine learning approach to incrementally learn and 
segment affixes using generic background knowledge.  We used Prolog script to split affixes 
from the Amharic word for further morphological analysis. Amharic, a Semitic language, 
has very complex inflectional and derivational verb morphology, with many possible 
prefixes and suffixes which are used to show various grammatical features. Further 
segmentation of the affixes into valid morphemes is a challenge addressed in this paper. 
The paper demonstrates how incremental and easy-to-complex examples can be used to 
learn such language constructs. The experiment revealed that affixes could be further 
segmented into valid prefixes and suffixes using a generic and robust string manipulation 
script by the help of an intelligent teacher who presents examples in incremental order of 
complexity allowing the system to gradually build its knowledge. The system is able to do 
the segmentation with 0.94 Precision and 0.97 Recall rates. 

KEYWORDS: Amharic, Morphology, Segmentation, Incremental Learning, ILP, Machine 
Learning 
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1 Introduction 

Amharic is a Semitic language, related to Hebrew, Arabic, and Syriac. Next to Arabic, it is the 
second most spoken Semitic language with around 27 million speakers (Sieber, 2005; 
Gasser, 2011). As the working language of the Ethiopian Federal Government and some 
regional governments in Ethiopia1, most documents in the country are produced in 
Amharic. There is also an enormous production of electronic and online accessible Amharic 
documents. 

One of the fundamental computational tasks for a language is analysis of its morphology, 
where the goal is to derive the root and grammatical properties of a word based on its 
internal structure. Morphological analysis, especially for complex languages like Amharic, is 
vital for development and application of many practical natural language processing 
systems such as machine-readable dictionaries, machine translation, information retrieval, 
spell-checkers, and speech recognition. 

While various approaches have been used for other languages, Amharic morphology has so 
far been attempted using only rule-based methods. In our previous work, we have tried to 
apply a machine learning approach to learn morphological rules. In the experiment, we 
were able to learn various affixes attached to the stem and analyze the internal stem 
structure of the verb which is one crucial task in Semitic morphology. The major limitation 
of the work concerns words made up of the stem and more than one adjacent prefix or 
suffix; in those cases the system fails to segment the affixes. This work presents the 
continuation of our previous system and attempts to further segment the affixes into valid 
prefixes and suffixes using generic and incremental learning without any initial knowledge 
of the prefixes and suffixes of the language. 

2 Amharic Verb Morphology and Affixation 

Amharic, with all its complex word formation nature, has been more or less thoroughly 
studied by linguists (Sieber, 2005; Dawkins, 1960; Bender, 1968). In addition to lexical 
information, the morphemes in an Amharic verb convey subject and object person, number, 
and gender; tense, aspect, and mood; various derivational categories such as passive, 
causative, and reciprocal; polarity (affirmative/negative); relativization; and a range of 
prepositions and conjunctions. 

2.1 Amharic Verb Morphology 

For Amharic, like most other languages, verbs have the most complex morphology. In 
addition to the affixation, reduplication, and compounding common to other languages, in 
Amharic, as in other Semitic languages, verb stems consist of a root + vowels + template 
merger (e.g., sbr + ee + CVCVC, which leads to the stem  seber 2 ‘broke’) (Yimam, 1995; 
Bender, 1968). This non-concatenative process makes morphological analysis more 

                                                           

1  Some of these are: Addis Ababa City Council, Amhara Region, Benishangul-Gumuz Region and Dire Dawa Administrative Council 
2 Amharic is written in the Geez writing system. For our morphology learning system we romanize Amharic orthography, and we 

cite these romanized forms in this paper. 
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complex than in languages whose morphology is characterized by simple affixation. The 
affixes also contribute to the complexity. Verbs can take up to four prefixes and up to five 
suffixes, and the affixes have an intricate set of co-occurrence rules. 

Grammatical features on Amharic verbs are not only shown using the affixes. The 
intercalation pattern of the consonants and the vowels that make up the verb stem will also 
be used to determine various grammatical features. For example, the following two verbs 
have the same prefixes and suffixes and the same root while the pattern in which the 
consonants and the vowels intercalate is different, resulting in different grammatical 
information. 

?-sebr-alehu (እሰብራለሁ) 1s pers. sing. simplex imperfective   
Gloss: ‘I will break’ 

?-seber-alehu (እሰበራለሁ) 1stpers.sing.passive imperfective 
Gloss: ‘I will be broken’ 

FIGURE 1 – Stem template variation example 

In this second case, the difference in grammatical feature is due to the affixes rather than 
the internal root template structure of the word. 

te-seber-ku (ተሰበርኩ) 1st pers. sing. passive perfective 

Gloss: ‘I was/have been broken’ 
seber-ku (ሰበርኩ) 1st pers. sing. simplex perfective 

Gloss: ‘I broke’ 
FIGURE 2 – Affix variation example 

As in many other languages, Amharic morphology is also characterized by alternation rules 
governing the form that morphemes take in particular environments. The alternation can 
happen either at the stem affix intersection points or within the stem itself. Suffix-based 
alternation is seen, for example, in the second person singular feminine imperfect and 
imperative. Amharic is also characterized by alternation between morphemes of the affixes. 
For example, the prefix ‘ye’ if it comes before the negative prefix ‘al’, alternation occurs and 
the form changes to ‘yal’ where the ‘e’ sound gets deleted.  

2.2 Affixation in Amharic  

Languages having multiple morphemes concatenated to form prefixes and suffixes show 
some interrelationship and co-occurrence sequences. Affixes have predefined slots in a 
language. The slots constrain the occurrence of the affixes, and a generic morphological 
learning system should be flexible enough to learn the slots and the morphemes that can fill 
each of them. Such morphology learning systems may be unsupervised (Goldsmith, 2001; 
Hammarström & Borin, 2011; De Pauw & Wagacha, 2007) or supervised (Oflazer et al 
2001; Kazakov, 2000). Unsupervised systems are trained on unanalyzed word forms and 
have the obvious advantage of not requiring segmented data. The segmentation result will 
help to learn rules by using thin supervised examples. 
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FIGURE 3 – Stem Suffix Analysis Example 

 

 

 
 
 
 

FIGURE 4 – Stem Prefix Analysis Example3 

3 Incremental Affix Segmentation and ILP 

Incremental learning dictates the use of less complex structures to be learned at early 
stages and move on to more complex and sophisticated structures using knowledge of 
previous structures as a basis. Such learning process can be implemented using Inductive 
Logic Programming (ILP) which is a machine learning approach that learns rules from 
positive and negative examples. 

3.1 Incremental Learning 

The problem of language acquisition has been one of the central issues in cognitive science, 
as well as in linguistics. Within the framework of Universal Grammar (Chomsky, 1981), 
language acquisition is assumed to be the process of setting the values of parameters, 
which are conceived of as innately-specified points of grammatical variations that have 
multiple consequences for the different aspects of the surface grammar. Here, Chomsky 
argued that language is so complex that the only way it could be learned is through innate 
constraints on what was a possible grammar using its parameters. More recently and in 
opposition to Chomsky’s and others’ innatist (or nativist) view, there have been arguments 
from psychologists and cognitive linguists who support empiricist theories of language 
acquisition. Among other things, they argue that innate constraints are not needed (this is 
one instance of the large “nature vs. nurture debate”). One of these simplifications come 
from what is “child-directed speech” (CDS), the simplified speech that adults naturally use 
when speaking to children. But of course adults adjust CDS as children get older, making it 
more and more complex. Thus, one argument claims that the only way children are able to 
learn language is through the graded simplification made by adults to the input that the 
child receives. This supports the idea of incremental learning, by which examples with less 

                                                           

3 The last two suffixes {a-y} are the result of the actual suffixes {al - y} transformed due to the assimilation process 

seberkulachuna 
{ሰበርኩላችሁና} 

seber kulachuna 

ku-l-achu-na 

= + 

slemaysebr 
{ስለማይሰብር} 

slemay sebr 

sle-m-a-y 

= + 
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complex word structure are presented first and the knowledge of affixes acquired from 
early training becomes the basis of the more complex knowledge acquired later.  

The ability to acquire and use language and its constructs is a key aspect that distinguishes 
humans from other beings. Learning is the process of acquiring knowledge over time from 
different realities we are exposed to. The same is true for acquiring language related facts 
and rules by human beings (Pirrelli & Herreros, 2005). The brain learns by observing, 
constantly labelling and creating its own rules that define or explain what has been 
observed. This learning process demands massive amount of data or exposure to relevant 
and interesting instances to deduce rules from. In cases where no such data is available or 
the aim is to learn from few examples, incremental learning through strategic example 
coverage would be suitable. Inspired by features of child language acquisition, the best way 
to learn language is by applying child language learning methods. Children observe and are 
able to identify similarities and add to their database such common features relating it to 
the meaning or the form of a word. For example, as presented by Sara Finley, when a child 
encounters words like {dogs, cats, chairs, boys}, he can discover part of the word forming 
feature similarity through the suffix ‘s’, plural marker in this case (Finley, 2012).  Thus, 
distributional cues are very important for children to find where relationship between 
words lie and find patterns for future use.  

At early ages it is common to see children make such mistakes of segmenting part of the 
main word as affix or attaching affix on fully formed words. These actions are considered to 
be part of the learning process.  

In morphology, learning constituents of a word in distributional or structural cues proved 
to be effective (Cavar, 2005) and be linked with incremental learning to teach the learner in 
a more logical manner. Such language processing by means of data-oriented methods 
emphasize the assumption that human language perception and production works with 
representations of concrete past language experiences, rather than with abstract grammar 
rules (Rens & Remko, 1996). The next section describes such incremental learning for affix 
segmentation task. 

3.2 Incremental Affix Segmentation  

Incremental learning of morphological affix segmentation results in knowledge acquisition 
when the system encounters new affixes, through the further segmentation of the string 
based on previous knowledge (Altenbek 2009). The first step in the segmentation process 
is to detach the affix from the main stem. This has been done using our previous system 
that employs inductive logic programming to learn stems and affixes as well as internal 
stem structure from examples (Mulugeta & Gasser, 2012). The system takes the main word 
and keeps database of valid affixes where the challenge relies on how to further analyze the 
affix into a valid list. In this regard, Prolog programming language is more suited for such 
action due to its easy knowledge acquisition and database manipulation features.   

While we focus on Amharic verb affix segmentation and morphology learning, our goal is a 
general-purpose ILP morphology learner that automatically segments affixes based on 
previous knowledge during the learning process. Thus we seek background knowledge that 
is plausible across languages that can be combined with language-specific examples and 
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intelligent ways of presenting examples to yield rule hypotheses that generalize to new 
examples in the language. 

3.3 Inductive Logic Programming 

In induction, one begins with some plausible and selected examples during the training 
phase. Then, it determines what general conclusion can logically be derived from those 
examples. For morphological analysis, the learning data would be expected to guide the 
construction of word formation rules, the affix segmentation and interactions between the 
constituents of a word.   

There have been only a few attempts to apply Inductive Logic Programming (ILP) to 
morphology. Most of these have dealt with languages with relatively simple morphology 
handling few affixations (Kazakov, 2000; Manandhar et al, 1998; Zdravkova et al, 2005). 
These attempts consider the affixes extracted as one singleton morpheme which is not the 
case for complex languages like Amharic. However, their results are found to be 
encouraging. The enhancement to such learning systems would be the task of further 
analysis of the affixes. The analysis shall include but not limited to prefix and suffix 
knowledge capturing through segmentation process to help build database of prefixes and 
suffixes for deep grammar scrutiny. This learning and knowledge acquisition task has been 
done using CLOG. 

CLOG is a Prolog based ILP system, developed by Manandhar et al (1998)4, for learning first 
order decision lists (rules) on the basis of positive examples only. A rule in Prolog is a 
clause with one or more conditions. The right-hand side of the rule (the body) is a condition 
and the left-hand side of the rule (the head) is the conclusion. The operator between the left 
and the right hand side (the sign ‘:-’) means if. The body of a rule is a list of goals separated 
by commas, where commas are understood as conjunctions. For a rule (the head) to be 
true, all of its conditions/goals must be evaluated to be true. In the expression below, there 
are two ways of evaluating the goal p even with two different results. Accordingly, p is true 
if q and r are true or if s and t are true5.  

p :- q, r. 
p :- s, t.  

 
p         (q ᴧ r) ᴠ (s ᴧ t) 

 
Where q, r, s and t could be facts or predicates and p is a predicate with any number of arguments. 
 

CLOG relies on output completeness, which assumes that every form of an object is 
included in the example and everything else is excluded (Mooney & Califf, 1995).  We 
preferred CLOG over other ILP systems because it requires only positive examples and runs 
faster than the other variants (Manandhar et al, 1998). CLOG uses a hill climbing strategy to 
build the rules, starting from a simple goal and iteratively adding more rules to satisfy the 
goal until there are no possible improvements. The evaluation of the rules generated by the 
learner is validated using a gain function that compares the number of positively and 
negatively covered examples in the current and previous learning stages (Manandhar et al, 
1998). 

                                                           

4 CLOG is a freely avalable ILP system at:  ( http://www-users.cs.york.ac.uk/suresh/CLOG.html) 
5 Refer to http://en.wikipedia.org/wiki/Prolog for detailed illustration on Prolog 
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4 Experiments and Integration with Morphology Learning System 

ILP is a rarely used method for morphology and language related learning. The approach 
demands well crafted background knowledge with the level of depth required for 
supervision and a set of positive and/or negative examples to learn from. Our previous 
experiment, which also uses ILP, is able to extract verb morphological rules and internal 
stem structure as well as orthographic alternation rules from examples on Amharic subject 
markers (Mulugeta & Gasser, 2012). Our system takes examples of the form shown in 
Figure 5 and extract morphological rules based on the various generic background 
knowledge crafted for the learning task.  

In Figure 5, the predicate 'stem' provides a word and its stem to permit the extraction of the 
affixes and root template structure of the word. The first two parameters specify the input 
word and the stem of the word after affixes are removed. The third parameter is the 
codification of the grammatical features (tense-aspect-mood, voice, subject and object) of 
the word. The codification is a simple knowledge about the various grammatical features of 
the word. For example, the fourth value in the third argument represents the object marker 
of the word where 2 means second person singular masculine, 6 means third person plural 
neuter and so forth. 

stem([s,e,b,e,r,k,u,l,h],[s,e,b,e,r] [1,1,1,2]). 

stem([s,e,b,e,r,k,l,a,c,h,w],[s,e,b,e,r], [1,1,2,6]). 

stem([s,e,b,e,r,x,l,n],[s,e,b,e,r], [1,1,3,8]). 
FIGURE 5 – Sample training examples for the learning process 

 

The background knowledge added to handle the affix segmentation and database 
manipulation is generic in its nature making it applicable for any language of interest. In 
addition, the background predicate also includes scripts for string manipulation and root 
extraction. Both are language-independent, making the approach adaptable to other similar 
languages. 

The previous system is able to generate rules of the following structure by taking the 
examples of the form shown in Figure 5 above. 

stem(Word, Stem, [1, 2, 7, 0]):- 
 set_affix(Word, Stem, [y], [], [u], []), 
  feature([1, 2, 7, 0], [simplex, imperfective, tppn, noobj]), 
  template(Stem, [1, 0, 1, 1]). 
 
stem(Word, Stem, [2, 1, 1, 2]):- 
 set_affix(Word, Stem, [te], [], [kulh], []), 
  feature([2, 1,1, 2], [passive, perfective, fpsn, spsm]), 
  template(Stem, [1, 0, 1, 0, 1]). 

FIGURE 6 – Learned affix identification rule example 
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Accordingly, the rules learned through ILP contain three major background predicates:  

 The 'set_affix' predicate uses a combination of multiple ‘split’ operations to 
identify the prefixes and suffixes attached to the input word. This predicate is used 
to learn the affixes from examples presented by taking only the Word and the Stem 
parameters (the first two arguments from the example). The last four arguments of 
set_affix predicate represent the prefix and suffix pairs in the Word and Stem 
parameters.  

 The ‘template’ predicate is used to extract the valid template for Stem. The 
predicate manipulates the stem to identify positions for the vowels.  This predicate 
uses the list of vowels (vocal) in the language to assign ‘0’ for the vowels and ‘1’ for 
the consonants. 

 The ‘feature’ predicate is used to associate the identified affixes and root CV 
pattern with the known grammatical features from the example. This predicate 
uses a codified representation of the grammatical features in the language, which is 
also encoded as background knowledge. This predicate is the only language-
dependent background knowledge we have used in our implementation. 

The two example rules in Figure 6 show that the prefixes [y] and [te] as well as the suffixes 
[u] and [kulh] are extracted from the examples with the respective root template structure. 
The output is limited with no further segmentation of the affixes to relate it with the 
grammatical features for further analysis. The current experiment includes a module which 
tries to do affix segmentation in incremental manner. The following algorithm and script 
presents how the segmentation is done in an incremental manner based on the experiment 
setup. While the algorithm is generic for any affix presented, the illustration shown later 
demonstrates that the order in which the examples are presented will dictate the 
knowledge acquired by the learner.   

For each Suffix A extracted 

     Take A as a possible Suffix 

     Take any nonempty leftmost segment B of A  

     Check if B exists in the Suffix database 

     If B is a valid Suffix  

Remove A from the Suffix database 

Assign A to be the remaining substring 

Repeat the suffix segmentation process 

End if there are no strings to segment 

FIGURE 7 – Suffix segmentation algorithm 
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segS([ ]):-!. 
segS(A):- 
 findall(D, (append(C,D,A),C\==[ ],suffix(C),segS(D)), Segs), 
 Segs==[ ]->assertz(suffix(A));!. 
 

seg_suffix([ ],[ ]). 
seg_suffix(A,[C|B]):- 
 append(C,D,A), 
 C\==[ ], 
 suffix(C),  
 seg_suffix(D,B). 

FIGURE 8 – Suffix segmentation and list generation Prolog script 

* segS segments suffixes and updates the database whenever a new suffix is identified 

through the assertz predicate. 

* seg_suffix convert one affix string into a list of morphemes enclosed in a square bracket. 

For example, [kulhna] will be changed to [[ku],[lh],[na]] based on prior affix knowledge.  

The system works progressively by picking examples from the training data and learning 
the affixes, stem template structure and alternation rules. Along with affix extraction, the 
systems takes each affix from the example and iteratively build its database and segment 
upcoming affixes based on this knowledge. The following analysis and knowledge 
acquisition example illustrates how the affix segmentation incrementally learns a suffix 
based on the examples presented. 

Iteration 1 
Initial Suffix Database: {Ø} 
Training Example 1: stem([s,e,b,e,r,k,u],[s,e,b,e,r] [1,1,1,0]). 
Stem Extraction Result: [ ], [s,e,b,e,r], [k,u]    
Affix Identification: [k,u] *no further segmentation as the database is empty 
Updated Suffix Database: { suffix([k,u])} 
 

Iteration 2 
Initial Suffix Database: { suffix([k,u])} 
Training Example 2: stem([s,e,b,e,r,k,u,l,h],[s,e,b,e,r] [1,1,1,2]). 
Stem Extraction Result: [ ], [s,e,b,e,r], [k,u,l,h]    
Affix Identification:{[k,u], [l,h]} *as [k,u] is already identified earlier 
Updated Suffix Database: { suffix([k,u]), suffix([l,h])} 
 

Iteration 3 
Initial Suffix Database: { suffix([k,u]), suffix([l,h])} 
Training Example 2: stem([s,e,b,e,r,k,u,l,h,n,a],[s,e,b,e,r] [1,1,1,2]). 
Stem Extraction Result: [ ], [s,e,b,e,r], [k,u,l,h,n,a]    
Affix Identification:{[k,u],[l,h],[n,a]} *as [k,u] and [l,h]are already identified earlier 
Updated Suffix Database: { suffix([k,u]), suffix([l,h]), suffix([n,a])} 
 

Iteration 4 
Initial Suffix Database: { suffix([k,u]), suffix([l,h]), suffix([n,a])}} 
Training Example 2: stem([s,e,b,e,r,k,u,l,a,c,h,u],[s,e,b,e,r] [1,1,1,6]). 
Stem Extraction Result: [ ], [s,e,b,e,r], [k,u,l,h,n,a]    
Affix Identification:{[k,u],[l,a,c,h,u]} *as [k,u] is already identified earlier 
Updated Suffix Database: { suffix([k,u]), suffix([l,h]), suffix([n,a]), suffix([l,a,c,h,u])} 

FIGURE 9 – Suffix learning and segmentation process illustration 
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The illustration in Figure 9 (only suffix learning as a show case) shows that, at the 
beginning of the learning process (iteration 1), the prefix and suffix database is empty 
assuming that the first examples to be presented shall have only a single prefix and suffix. 
These prefixes and suffixes shall be taken as the primary knowledge acquired. The 
upcoming and remaining affixes shall be learned based on this previous knowledge. After 
iteration 4, four suffixes are leaned that are results of incremental learning starting from an 
empty database and systematic presentation of examples. It should be noted here that if the 
example in iteration 2 has been presented first, the initial database would have been 
{suffix([k,u,l,h])} and the first example with the suffix [k,u] would not have any impact on its 
previous knowledge of suffix. This indicates that the system requires the skill of the teacher 
to guide the learner with more logical flow.  

One potential drawback of such incremental learning is the need for an intelligent teacher. 
What does our teacher need to know? The most important requirement is information 
about the number of prefixes and suffixes that a word contains. The main constraint in 
presentation of words is the order of the example based on the number of affixes it 
contains. We would expect a literate native speaker of the language with a little linguistic 
training to have this awareness. One advantage of the current implementation is that, the 
rules learned with the segmented affixes are easily understandable by linguists. This will 
help the teacher to restructure the examples to formulate more logical rules and segments.   

5 Results and Error Analysis 

ILP has proven to be applicable for word formation rule extraction for languages with 
simple rules like English. Our experiment shows that the approach can also be used for 
complex languages with more sophisticated background predicates and more examples. 
While Amharic has more prefixes and suffixes for various grammatical features, our system 
is able to further segment the affixes into possible and valid prefixes and suffixes. With 140 
training examples containing words, the stem and codified morphological features, the 
system is able to learn and extract 6 prefixes and 25 suffixes. Moreover, the system has 
learned 70 stem affix extraction rules. As stated in the experiment section, one major 
limitation of the approach is that the system is not able to look back on previously acquired 
affixes and do further segmentation.  

stem(Word, Stem, [2, 1, 1, 2]):- 
 set_affix(Word, Stem, [te], [], [[ku],[lh]], []), 
  feature([2, 1,1, 2], [passive, perfective, fpsn, spsm, pos]), 
  template(Stem, [1, 0, 1, 0, 1]). 
 
stem(Word, Stem, [2, 1, 1, 2]):- 
 set_affix(Word, Stem, [[al],[te]], [], [[ku],[lh],[m]], []), 
  feature([2, 1,1, 2], [passive, perfective, fpsn, spsm, neg]), 
  template(Stem, [1, 0, 1, 0, 1]). 

FIGURE 10 – New Rules with Affix Segmentation Result 
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Another main advantage of such learned rules is the ability to review the rules and be 
verified by a linguist for correctness. This benefit can also be used by the teacher to decide 
on how to order the examples for better knowledge acquisition. If a certain example 
presentation generates wrong or incorrect segmentation, the teacher can easily rearrange 
the list of examples and see a corrected or better segmented result. Such experiments by 
the example provider could also help to identify complexity of word structure which is 
taken to be trivial for experts.   

An experiment was also done to see the effect of order of examples has on the segment 
learning predicate.  The attempt showed that most of the errors in the segmentation 
process arise from the ordering of examples. Thus, for example, if the system encounters 
the affix [kulh] before [ku], then, the system puts [kulh] in its database of suffixes rather 
than segmenting it into [[ku],[lh]]. With the same token for the suffixes [ku] and [k] which 
are subject first person and second person masculine markers, the order of presentation 
might confuse the learner. If the system encounters a word with the suffix [k] first, then the 
second suffix will be spuriously segmented into [[k], [u]] .This necessitates that example 
presentation to the system should be done in an incremental way by an intelligent teacher. 
One of the limitations of the system, as explained above, is lack of correcting previously 
acquired knowledge to reformulate such rules.  

In Amharic, as in many other languages with multiple affixes, the affixes may change their 
form in particular phonological or orthographic environments. In finite-state morphology, 
these changes are captured in alternation rules. Although our ILP system succeeds in 
learning some of the alternation rules that play a role in root-template combination and at 
the boundaries between stems and prefixes or suffixes, we have not yet incorporated the 
learning of alternation rules into the component of the system that learns to segment 
prefixes and suffixes through incremental presentation of examples. In the future, we will 
experiment with the possibility of taking advantage of the teacher's knowledge of the 
alternate forms of an affix to learn from successive presentations of the same affix in 
different environments. 

The other limitation of ILP for morphology learning is the inability to learn rules from 
incomplete examples. In languages such as Amharic, there is a range of complex 
interactions among the different morphemes, but we cannot expect every one of the 
thousands of morpheme combinations to appear in the training set. When examples are 
limited to only some of the valid morpheme combinations, CLOG is inadequate because it is 
not able to use variables as part of the body of the predicates to be learned. 

To measure the effectiveness of the system, precision and recall is used to see the ratio of 
valid segmentation that exists in the data with the segmentation done by the system. From 
the 140 words provided to the system, a linguist extracted 221 valid segmentations. It 
should be noted here that some of the segmentations might appear in a number of 
instances in the data. From the same data set the system is able to extract 227 
segmentations while 215 of this segmentation are correct segmentations that match with 
the linguist’s analysis. The system has shown over generation of segments. The following 
figure shows the precision and recall values according to the statistics presented above. 
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FIGURE 11 – Precision and Recall result 

The precision and recall result is satisfactory enough to implement the system in large scale 
examples and words with more complexity. 

We are currently implementing the concept of mutual information to build knowledge from 
already known facts and rules entertaining partial information. The concept of partial 
information could be integrated with ILP to generate more rules from rules handling 
features and affix co-occurrences not found in the training example.   

Conclusion 

We have shown in this paper that ILP can be used to fast-track the process of learning 
morphological rules of complex languages like Amharic with a relatively small number of 
examples. Our experiment also showed that affixes could further be segmented into 
possible valid prefixes and suffixes during the learning process by building knowledge of 
affixes on the fly using incremental learning methods. Our previous implementation have 
gone beyond simple affix identification and confronts one of the challenges in template 
morphology by learning the root-template extraction as well as stem-internal alternation 
rule identification exhibited in Amharic and other Semitic languages. The current update 
aiming on affix manipulation also succeeds in segmenting affixes into valid prefixes and 
suffixes using database generated on the fly during the training phase. As the rules and 
segmentations are presented in easy and human understandable list of rules, the teacher 
could restructure the examples and feed the learner to gain better result as needed. 
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