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ABSTRACT
We study the problem of classifying the temporal relationship between events and time expres-
sions in text. In contrast to previous methods that require extensive feature engineering, our
approach is simple, relying only on a measure of parse tree similarity. Our method generates
such tree similarity values using dependency parses as input to a convolution kernel. The
resulting system outperforms the current state-of-the-art.

To further improve classifier performance, we can obtain more annotated data. Rather than rely
on expert annotation, we assess the feasibility of acquiring annotations through crowdsourcing.
We show that quality temporal relationship annotation can be crowdsourced from novices.
By leveraging the problem structure of temporal relation classification, we can selectively
acquire annotations on problem instances that we assess as more difficult. Employing this
annotation strategy allows us to achieve a classification accuracy of 73.2%, a statistically
significant improvement of 8.6% over the previous state-of-the-art, while trimming annotation
efforts by up to 37%.

Finally, as we believe that access to sufficient training data is a significant barrier to current
temporal relationship classification, we plan to share our collected data with the research
community to promote benchmarking and comparative studies.

KEYWORDS: temporal relations, information extraction, crowdsourcing, convolution kernels,
clause structure, dependency parsing.
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1 Introduction

We study the problem of temporal information extraction; specifically, we seek to establish when
an event has taken place relative to a time expression. We refer to this task as event-temporal
relationship classification. We adopt the same definitions for event and time expressions used
in TimeML1. Consider the sentence2:

Two top aides to Netanyahu , political adviser Uzi Arad and Cabinet Secretary
Danny Naveh, left for Europe on Sunday , apparently to investigate the Syrian
issue , the newspaper said.

(1)

In Sentence 1 “Sunday” is a time expression, while the various underlined words such as “said”
are events. A pictorial summary of the timeline of the events as they are described in the
sentence is shown in Figure 1. The time expression “Sunday” is marked on the timeline to
represent an instance in time. The spans of the arrows representing each of the events denote
the temporal relation between the three events and the time expression. In this case “left”
happens in the same time span denoted by “Sunday”. The other two events (i.e. “investigate”
and “said”) do not coincide with the “Sunday” marker and take place after the time span
denoted by “Sunday”.

Figure 1: Temporal relationships between events and a time expression in Sentence 1.

Knowing such temporal relations are useful for downstream natural language processing
applications. For example, Harabagiu and Bejan (2005) attempt to identify relationships
between entities and time expressions to improve their question answering system. They
combine knowledge of the relations between answer candidates and temporal expressions with
semantic inference to derive exact answers to temporal questions. Temporal relations are also
a recent focus in information extraction. In the temporal slot-filling task of the Knowledge
Population Track featured in the Text Analysis Conference (Ji et al., 2011), the shared task
required systems to add temporal information to extracted information. Such information
would enable inference on such knowledge bases to be extended to event ordering and perhaps
help to identify temporal contradictions.

Recognizing the value of temporal relations, the community has organized shared tasks to spur
research efforts in this area. In our work, we adopt the community-standard TempEval-2 task
definition and dataset (Verhagen et al., 2010). This dataset consists of 959 training instances for
the event-temporal relationship classification task, and a testing set of 138 instances. A summary
of the various event-temporal relationships annotated in the dataset is shown in Table 1.

1http://www.timeml.org.
2Extracted from document APW19980301.0720 of the TempEval-2 dataset.
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Event-Temporal Relationship Relative temporal ordering

OVERLAP Event happens within time expression
BEFORE Event happens before time expression
AFTER Event happens after time expression
BEFORE-OR-OVERLAP Event happens either before or within

time expression
OVERLAP-OR-AFTER Event happens either within or after

time expression
VAGUE Unable to assign a relation

Table 1: Event-temporal relationships in the TempEval-2 dataset.

State-of-the-art approaches to this problem make extensive use of careful feature engineering
to model both surface lexical cues as well as information about the syntactic relations between
parts of the sentences, focusing on the words that comprise the events and time expressions.
Both feature types manifest a wide array of values, making data sparsity a concern. Current
state-of-the-art systems achieve only about 65% accuracy, where the low performance has
indeed been partially attributed to data sparsity (Yoshikawa et al., 2009).

There are several techniques to address sparse data. We adopt two in this paper, both of
which lead to improved performance. First, we simplify the input features and classification
methodology. Specifically, we use a support vector machine provisioned with only two features:
dependency parse similarities of the time expression and the path from the event to time
expressions. By limiting our input features, we obtain denser judgments which enhance the
quality of the decision boundary. Second, we can enlarge our annotated dataset. To this end,
we exploit annotations obtained from novices via crowdsourcing. We show that augmenting the
TempEval-2 dataset with crowdsourced information improves classification performance slightly.
However, we can further boost performance by selectively acquiring annotations for difficult
and under-represented categories of instances. Pairing both techniques together allow us to
achieve an 8.6% improvement in accuracy over the current state-of-the-art, which is statistically
significant.

After first reviewing the related work, the remainder of this paper sequentially details these two
key contributions of our temporal classification work. In the first half, we detail our approach
for temporal relation classification. In the second half, we discuss our approach to selectively
annotate important problem instances via crowdsourcing.

2 Related Work

There has been a good amount of research on temporal relationship classification, culminating
in recent shared tasks in TempEval-1 (Verhagen et al., 2007) and TempEval-2 (Verhagen
et al., 2010). In fact, the event-temporal relationship classification problem we focus on is
exactly Task C in TempEval-2. Other temporal information extraction tasks include event-
event relationship classification, which involves determining which of two events took place
earlier. Top performing teams attempting Task C made use of supervised machine-learning,
including conditional random fields (Kolya et al., 2010), Markov logic (UzZaman and Allen,
2010; Ha et al., 2010), and maximum entropy classification (Derczynski and Gaizauskas,
2010). Enlarging the problem, Yoshikawa et al. (2009) proposed building an inference model
which jointly predicts event-temporal, temporal-document creation time and event-event temporal
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relationships within a given sentence. While the system performed comparably to other systems
in TempEval-1, such a joint model greatly enlarges the problem complexity as the search space
is a Cartesian product of the three separate problems.

All of the above systems employed similar features which we categorize into three feature types:
1) lexical cues, such as signal words and part-of-speech tags, 2) context, including the attributes
of the event and time expressions and 3) the grammatical structure of the sentences, obtained
by processing automatic parses. Possibly since they use similar features, the top performing
systems all perform similarly, achieving around 65% accuracy in their judgments. We note
that the feature types employed can take on many different values and thus represent a large
potential feature space. Given that the TempEval-2 dataset comprises of only 959 instances, we
believe the learned models suffer from sparse data, and can improve from the incorporation of
additional data.

Many researchers have looked at ways to reduce the annotation effort required to build a
sizable temporal dataset. Setzer et al. (2003) proposed making use of a set of inference rules to
identify useful unlabeled instances for annotation. If the equivalence of an unlabeled instance
to an already labeled instance can be shown, the unlabeled instance is discarded. Similarly,
we are proposing a systematic way in which unlabeled instances can be left out of the data
acquisition process. But instead of making use of pre-identified inference rules, our proposal
is fully automatic and exploits the dependency parse structure of unlabeled instances without
prior curation of hand-written rules.

In a bid to balance the cost of data acquisition with the need for more annotated data, the
organizers of TempEval-3 (UzZaman et al., 2012), to be held at SemEval-2013 propose augment-
ing a manually annotated dataset of 100K word tokens with around 500K semi-automatically
annotated instances. At the time of this writing, the semi-automatically annotated instances
have yet to be released.

In recent times, crowdsourcing has been a popular method employed to collect linguistic
annotations. Munro et al. (2010), for example, lists some linguistic projects which have
benefitted from crowdsourcing. To the best of our knowledge however, there is no existing
literature on the adaptation of crowdsourcing for temporal datasets.

3 Convolution Kernels using Dependency Parse Trees

What features and model should we adopt to create a robust temporal relation classifier that
takes full advantage of the small amount of annotated training data?

Given the sparsity of values in the features used by previous work, our approach is to reduce
the dimensionality of the input feature space, to make the feature space more dense. While
we concur with the prior work that the relation between the events and time expression are
important, we feel that the current approaches to model this information can be simplified.
Such structural relations are perhaps best captured by parse tree paths. Intuitively, if the parse
tree of a testing instance is similar to one from a training instance, we may guess that the
training instance’s type of temporal relation would also hold for the previously unseen testing
instance.

To compute the similarity between two parse trees, a typical approach is to engineer flat
representations of the parse structure through feature engineering. This process is time
consuming and often requires good knowledge of the problem structure to decide which
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features are more discriminative than others. Convolution kernels (Collins and Duffy, 2001) on
the other hand model this form of structure similarity well. Convolution tree kernels take as
input tree structures and calculate a degree of similarity between the two trees. In its simplest
form, similarity is computed by recursively counting the number of identical subtrees that
appear in both input instances. With this structural similarity measure, we can do away with
the need to “flatten” the structure with hand-devised representations. For these reasons, we use
a support vector machine (SVM) as our supervised classification model, adopting a convolution
kernel as its kernel function (Moschitti, 2006).

A second issue is then to decide the type of parse tree to employ. Most previous work centered
around the use of constituent grammar parses. In fact, the only other work that also adopts a
convolution kernel approach to temporal relation classification (Mirroshandel et al., 2011) also
uses constituent grammar parses. However, as constituent parses create internal phrasal nodes
for every semantic constituent, such parse trees are often deep and overly detailed. Paths in
such trees are fine-grained, capturing nuances (e.g., intervening finite verb phrase nodes), and
as such, may not generalize well when used to compute tree or path similarities.

To remedy this, we employ dependency parses instead of constituent parses. Dependency parses
are generally more compact than constituent grammar parses because they have no immediate
phrasal nodes. This translates into a more compact feature space. Bearing in mind that one of
the problems we are trying to overcome is that of data sparsity, we find that dependency parses
are generally more useful than constituent parses for this task.

We compute two features based on dependency parses:

1. Dependency path from event to time expression. Starting from a full dependency parse
of a sentence, we identify the vertices representing the event and time expressions. We
locate the shortest path between these two vertices and use this sub-tree as a feature.

2. Dependency parse of the time expression. Time expressions can range from single word
tokens to multi-word phrases, with vastly different semantics. For example, Friday, last
Friday and next Friday convey very different meanings. To capture this, we extract a
sub-tree from the full dependency parse consisting of all the vertices and edges related to
the time expression and use this as a feature.

3.1 Evaluation

How does our simplified, two input feature SVM compare against the prior work on the
TempEval-2 dataset?

Table 2 gives the performance of our classifier which we will refer to as SVMConvoDep vis-a-vis
the top performing systems in TempEval-2. We adopt the same accuracy metric used in the
TempEval-2 task, which is the number of correct answers divided by the number of answers. We
also list macro-averaged precision, recall, and F1 measures. We find macro-averaged measures
more appropriate than micro-averaged ones for this task. As will be explained later, the dataset
has a skewed distribution of labels, with OVERLAP forming the majority label. Micro-averaged
measures give more weight to the most common label in such skewed datasets, but we feel that
it is important for systems to be able to perform well across all the temporal labels.

To the best of our knowledge, our classifier outperforms all previous temporal relation classifiers.
While this performance gain is probably not statistically significant (as we have no access to the
participating systems’ individual judgments, it is impossible to check for statistical significance),

2113



we feel that these are impressive results as our classification input is decidedly simple (just two
subtrees derived from dependency parses as features).

System Accuracy (%) Precision Recall F1

SVMConvoDep 67.4 0.828 0.512 0.523
TRIOS 65.0

Not Available

JU_CSE 63.0
NCSU-indi 63.0
NCSU-joint 63.0
TRIPS 63.0
USFD2 63.0

Table 2: Performance on TempEval-2 testing set. Results for TempEval-2 systems are cited from
Verhagen et al. (2010).

4 Enlarging the Dataset through Crowdsourcing

Our next proposal to solve the data sparsity problem is to enlarge the dataset available.
Developing a large, suitably annotated dataset is expensive – both in terms of time and monetary
cost. Recent work in natural language processing suggests that crowdsourcing annotations
from the untrained public can provide annotated data at similar annotation quality as expert
annotators, but for a fraction of the cost (Sheng et al., 2008; Hsueh et al., 2009). However we
are unsure if these results are applicable to a temporal dataset which is inherently complex
(Setzer and Gaizauskas, 2000) and require a better understanding of the target language.

To find out, we set up a crowdsourcing task on CrowdFlower. We chose CrowdFlower as our
crowdsourcing platform, as it has access to a large user base (it uses Amazon Mechanical Turk
to find workers), but adds an extra validation layer to attempt to address quality concerns, as
this has been an issue in many applications of crowdsourcing in natural language annotation
tasks (Mason and Watts, 2009; Callison-Burch and Dredze, 2010).

4.1 Task Setup

Each annotation instance consists of a single sentence. We pre-process the sentence to highlight
one event expression and one time expression found within it. Annotators were tasked to
choose from five (OVERLAP, AFTER, BEFORE, NOT-RELATED, BAD-SENTENCE) possible tem-
poral relationships between the marked event and time expression. An additional choice for
BAD-SENTENCE was included to allow annotators to indicate if there had been problems with
our automatic pre-processing. Such instances (67 in our study) were discarded.

We required that at least 3 judgments be made for each annotation, and majority voting was
then used to decide on a final label for each annotation. To ensure the quality of the judgments
we had obtained, we made use of a validation facility provided by CrowdFlower. Pre-annotated
gold instances were mixed together with unlabeled instances. These gold instances were used
to validate the annotations made by each annotator. Annotators were not informed which were
the gold instances. During the annotation process, annotators who failed to label these gold
instances correctly were stopped from proceeding with the task, and the annotations they made
were discarded.

Raw Data. To ready a set of unlabeled instances for annotation, we crawled news articles on
several news web sites, including Wall Street Journal, New York Times, CNN, and Channel News
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Asia from 2 June to 8 July 2012. We made use of the sentence splitting module from the Apache
OpenNLP3 library to obtain individual sentences from these news articles. We built a CRF-based
event and time expression extractor (CRFEventTimexExt) which is able to automatically
identify event and time expressions in each of the collected sentences. For event extraction, we
made use of part-of-speech (POS) tags as a feature. For time expression extraction, we made
use of a compiled lexicon of the days of a week and months of a year on top of POS tags. The
performance of our extractor is compared against top participating systems in TempEval-2 in
Table 3. We include only the results of systems which are able extract both event and time
expressions as it is not required for systems to be able to do both in TempEval-2.

System
Event Time

Precision Recall F1 Precision Recall F1

CRFEventTimexExt 0.81 0.82 0.82 0.76 0.62 0.68
Edinburgh 0.75 0.85 0.80 0.85 0.82 0.84
TIPSem 0.81 0.86 0.83 0.92 0.80 0.85
TRIPS 0.55 0.88 0.68 0.85 0.85 0.85
TRIOS 0.80 0.74 0.77 0.85 0.85 0.85

Table 3: Comparison of event and time expression identification with TempEval-2 systems.
Performance of TempEval-2 systems are cited from Verhagen et al. (2010).

We are able to turn in competitive F1 scores for event expression extraction, but less so for
time expression extraction due mainly to poor recall. We find the precision scores of 0.81 and
0.76 for event and time expression identification respectively sufficiently high as this is part of
pre-processing. Incorrectly identified event and expressions can be labeled as so by annotators,
and these precision scores will minimize the occurrences of such mistakes. To address the
problems with recall, we can always collect more sentences to increase the number of time
expressions we have for annotation.

4.2 Experiments

We first want to test how a similarly sized crowdsourced annotation compares with the manual,
expert annotations from TempEval-2. For this reason, we extracted an initial batch of 1,000
tuples (close in size to the TempEval-2’s training data of 959 instances) of event and time
expressions from the sentences we had crawled. We collected annotations for each of the tuples
on CrowdFlower. We refer to this dataset as d-1000. We compared the distribution of the
labels within this collected set with the TempEval-2 training and testing sets in Table 4.

The skewed distribution in the TempEval-2 datasets are similarly observed in the collected
dataset, with the OVERLAP label taking up more than 50% of the whole dataset.

We trained a new classifier using the same features as SVMConvoDep with the crowdsourced
annotations d-1000. The performance of this trained classifier, CF-1000, on the TempEval-2
testing set is shown in Table 5. In the table we have also included macro-averaged precision,
recall and F1 measures.

CF-1000 did not do as well as SVMConvoDep in terms of accuracy. While its F1 score is slightly
higher, the difference is not statistically significant. This is not surprising for two reasons. First

3http://opennlp.apache.org/.
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Dataset Size
Distribution of label (%)

OVERLAP BEFORE AFTER Others

TempEval-2 training set 959 53.8 18.0 23.0 5.2
TempEval-2 testing set 138 55.1 14.5 19.6 10.9

d-1000 1000 70.0 12.2 17.8 0.0

Table 4: Distribution of labels in different datasets.

the annotators recruited for the annotation task are not domain experts, and we can expect
mistakes in the annotations obtained. Second, SVMConvoDep is trained on the TempEval-2
training set. This dataset is prepared in similar fashion together with the TempEval-2 testing
set we are evaluating on. We will expect the two datasets to share more similar attributes
and characteristics than the d-1000 set that we had collected. The content of the TempEval-2
datasets and ours span a different time period, are sourced from different sources, and possibly
drawn from different domains and categories.

We tried to combine the TempEval-2 training set with d-1000. With this combined dataset,
we trained another classifier CF-1000+TE. The performance of this classifier is also reported
in Table 5. We get improved results in both accuracy and F1 scores. This improvement is
significant, with p < 0.05 when tested with the paired Student’s t-test.

System Accuracy (%) Precision Recall F1

SVMConvoDep 67.4 0.828 0.512 0.523
CF-1000 65.2 0.578 0.535 0.525
CF-1000+TE 71.7 0.726 0.598 0.615

Table 5: Classifier performance on TempEval-2 testing set.

There are two important conclusions that we can draw from these results. First, the difference in
performance between SVMConvoDep and CF-1000 is slight. So while the the novices recruited
via crowdsourcing may not have been domain experts, they are able to generate a dataset that
is comparable to an expert-curated one.

Then, the improvement to the performance of CF-1000+TE shows us that despite the possible
differences in time span, source, and categorization of d-1000 from the TempEval-2 dataset
as we have suggested, there is value to the crowdsourced dataset. Doubling the amount of
training data available by putting d-1000 and the TempEval-2 training set together rewards
performance.

5 A Smarter Way

With crowdsourcing, the costs associated with generating temporal datasets are lowered. Yet
we want to do this efficiently with minimal wastage. In this section, we explain how we can
selectively acquire annotations to reduce the costs involved without affecting the efficacy of the
data collected.

Motivation. We recognize that it is often not easy to decide on the relationship between an
event and time expression. For example let us go back and take a look at Sentence 1.

Within the sentence there are several event expressions. For the sake of this discussion we
focus on just two of them: 1) “left”, and 2) “said”. One immediate observation is that time
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expressions are commonly adjuncts (in this case, a prepositional phrase (PP)) that attach to
a verb phrase (VP). This implies that time expressions often directly modify only the head it
is attached to. In such cases, it is usually easy to identify the temporal relationship between
the event and time expression. Looking at “left” and “Sunday”, it is quite straightforward to
determine that they take place within the same time span.

However, it gets significantly more difficult when we look at “said” and “Sunday”. We have to
read through more of the sentence to build up an understanding of the relation between “left”,
“investigate”, and “said” before we can conclude that “said” takes place after “Sunday”.

Our key insight to more efficient data acquisition is to leverage this observation. We postulate
that it is more useful if we can gather annotations for complex instances instead of easier ones.

Definitions. We define a few terms that we will use in the rest of this paper. For the event-
temporal relationship classification problem, the input is a collection S of sentences. Each
sentence s is composed of one or more word tokens, i.e. s = w1w2 . . .. Let s∗ be the set
of all possible subsequences of s. For each s, we can define a set of unigram word tokens
εs = {w, w ∈ s} that are event expressions. We can also define a set Θs = {θ ,θ ∈ s∗} which
includes all the time expressions within s. The problem then is to define some function
f : s, e, t → R, s ∈ S, e ∈ εs, t ∈ Θs where R is the temporal relationship between the event
expression e and time expression t.

Building on our observation, we want to be able to partition a set of unlabeled instances so that
the more complex instances are separated from the easier ones. We propose building such a
partitioning scheme around the ordering of the elements in εs given a time expression t ∈ Θs.

To do this, we first build a dependency parse4 of the input sentence s, where each wi ∈ s forms a
vertex within the dependency parse tree. A portion of the dependency parse tree for Sentence 1
is shown in Figure 2.

root said

partmod left

prep on

pobj Sunday

prep for

nsubj newspaper. . .

Figure 2: Excerpt of the dependency parse for Sentence 1.

In the figure, the governing dependency relation of a word is shown as a vertex. The associated
word is also shown in italics to illustrate which part of the sentence this parse is about.

For a given dependency parse and a target time expression t, we can define a total order Ot on
εs. Ot is defined by arranging each w ∈ εs in ascending order of their respective distances from
the time expression vertex. Distance in this case is defined as the number of edges that needs to
be traversed to reach the time expression vertex.

Imposing the total order Ot on εs gives us a totally ordered set, i.e. (Ot ,εs) = {e0, e1, . . .}. From
this, for every input sentence s and its associated event (e) and time expressions (t), we can
place the tuple < s, e, t > into a partition Pi , where i is the index of e within (Ot ,εs).

4We make use of Stanford dependencies (Klein and Manning, 2003).
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Referring to Sentence 1 as an illustration, we thus place <“left”, “Sunday”> in P0 be-
cause “left” is the nearest event expression to “Sunday” in the dependency parse in Figure 2.
<“said”,“Sunday”> will be placed in P1 as “said” is the next nearest event expression. For
convenience, we will also be referring to Pi as the set of Level-i instances.

This partitioning scheme is premised on the intuition that it requires more effort to understand
the temporal relationship between event and time expressions which are both structurally and
semantically further away from each other. Higher level instances thus should be more complex
than their lower level peers.

Following this scheme, we separated the TempEval-2 testing set into different partitions based
on our prescribed methodology. A breakdown of the performance of SVMConvoDep on each
of the partitions Pi is shown in Table 6. Accuracy drops steadily from Level-0 instances to
Level-2 instances. This provides support for our intuition that higher level instances are harder
to classify accurately.

Given that there are only 10 Level-3 instances and 1 Level-4 instance, the variance in measure-
ments can potentially be very wide. There are too few Level-3 and Level-4 instances for their
results to be analyzed reliably.

System
Accuracy (%)

Level-0 (59) Level-1 (47) Level-2 (21) Level-3 (10) Level-4 (1)

SVMConvoDep 84.5 66.0 42.9 30.0 100.0

Table 6: Breakdown of performance on partitions of TempEval-2 testing data. The number of
instances for each partition is indicated in parentheses.

Given the high prediction accuracy on Level-0 instances, we argue that it is not necessary to
obtain more annotations for them. Instead we should focus on the higher level instances. By
opting not to annotate additional Level-0 instances, substantial cost savings can be made, as
seen from Table 7. In the table we present a breakdown of the relative size of each partition
to its entire dataset. d-full is a set of 8,851 tuples of event and time expressions that we
have extracted from the same set of sentences we had crawled earlier. As seen from the table,
Level-0 instances consistently form a large part of the various datasets. Not annotating Level-0
instances will directly lead to a cost savings of at least 37%.

Dataset
Relative size of partition (%)

Level-0 Level-1 Level-2 Others

TempEval-2 Training Set 40.9 35.2 15.1 8.8
TempEval-2 Testing Set 41.4 34.3 15.7 8.6
d-full 37.0 34.3 17.5 11.2

Table 7: Breakdown of partition sizes of different datasets.

5.1 Experiments

To study the effectiveness of our recommendations, we collected annotations for all the tuples
in d-full via CrowdFlower in a similar way to what we had done earlier. From this d-full
collection of 8,851 annotations, we removed all Level-0 instances to create a subset of 5,576
annotations which we will call d-nolevel0.
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Using d-full and d-nolevel0, we trained two new classifiers CF-Full and CF-NoLevel0

respectively. Table 8 shows the performance of these two new classifiers with that of
SVMConvoDep when tested with the TempEval-2 testing set.

From the results, we note that CF-NoLevel0 is able to deliver a significant performance gain
of about 8.6% over SVMConvoDep (p < 0.05) even though it only made use of part of the
full dataset we had collected. Further, it is able to match the performance of CF-Full which
was trained over all collected instances (d-full). The performances of CF-NoLevel0 and
CF-Full are not significantly different.

System Accuracy (%) Precision Recall F1

SVMConvoDep 67.4 0.828 0.512 0.523
CF-NoLevel0 73.2 0.659 0.643 0.639
CF-Full 73.2 0.660 0.647 0.641

Table 8: Accuracy on TempEval-2 testing set.
These results are illuminating. We see that our proposed partitioning scheme is able to reliably
identify unlabeled instances that will not be able to contribute to better classifier performance.
By focusing our annotation effort only on more complex instances, we bring down data
acquisition costs by a large amount (37%) while retaining classifier performance.

6 Analysis and Discussion

6.1 Selective Data Acquisition

We try to probe deeper into the performance of both CF-NoLevel0 and CF-Full. We want
insight into why the former works as well as the latter, despite the large reduction in training
data.

Table 9 shows a more concise breakdown of the precision, recall and F1 scores of both classifiers
when tested with the TempEval-2 testing set. We see that both classifiers turn in similar
performance across all three labels. Performance for the OVERLAP label is better, possibly
because there are more training instances for it in the training dataset.

Classifier
OVERLAP BEFORE AFTER

P R F1 P R F1 P R F1

CF-NoLevel0 0.72 0.96 0.82 0.56 0.45 0.5 0.70 0.52 0.60
CF-Full 0.72 0.95 0.81 0.57 0.40 0.47 0.70 0.60 0.64

Table 9: Performance measures on TempEval-2 testing set broken down by individual labels.
Table 10 illustrates the distribution of the AFTER and BEFORE labels in the first three partitions
of the test data. The labels make up a larger part of the annotations at Level-1 and Level-2 than
at Level-0.

Putting the pieces of the puzzle together, it is likely that the training instances in Level-0 are
more useful for the OVERLAP label than the other two. CF-NoLevel0 is already able to classify
these instances quite well, so not having access to Level-0 training instances does not affect it
adversely.

We break down the performance of the classifiers on each partition of the test data in Figure 3. As
expected, without access to Level-0 training instances, CF-NoLevel0 is slightly outperformed
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Label
Distribution of labels (%)

Level-0 Level-1 Level-2

AFTER 10.1 21.2 23.6
BEFORE 5.1 13.7 16.1

Table 10: Distribution of labels in each partition.

(but not statistically so) by CF-Full for Level-0 test instances. Interestingly, the performance
of CF-NoLevel0 for Level-2 and Level-3 instances are also behind that for CF-Full. This
suggests that having additional Level-0 training instances can have an effect on classifier
performance for Level-2 and Level-3 test instances. In future work we will like to investigate
why this is the case.

Level-0 Level-1 Level-2 Level-3

40.0

60.0

80.0

100.0

86
.2

68
.1

57
.1

50
.0

89
.7

63
.8

61
.9

60
.0

Partitions of TempEval-2 test data.
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Figure 3: Breakdown of performance across different partitions.

6.2 Common Errors

We are also interested to investigate what more can be done to push system performance
towards its upper-bound. Typically, such a theoretic upper-bound is derived from the inter-
annotator agreement for the training set. The inter-annotator agreement for the annotations
we have collected for d-full is 78.8%. Considering that the participants of the crowdsourcing
exercise are not domain experts, the actual upper-bound could be higher. However this value is
a good starting point for our analysis.

The best performing classifier we have presented in this work has an accuracy of 73.2%. There
is still room for improvement towards our pessimistic upper-bound estimate. We study the
misclassifications made, building a confusion matrix for CF-NoLevel0. Studying the matrix in
Table 11, we observe two large clusters of errors.

Skewed dataset. First, BEFORE and AFTER instances are often mis-classified as OVERLAP.
Reflecting on this, we believe the skewed training dataset where OVERLAP instances form a
majority is one of the reasons why.

Considering the lower recall scores we get for BEFORE and AFTER labels, the mis-classifications
are likely a direct result of a lack of suitable training instances within the training dataset to
better identify BEFORE and AFTER instances.
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Actual Label
Predicted label

OVERLAP BEFORE AFTER

OVERLAP 78 2 1
BEFORE 7 9 4
AFTER 13 0 14

Table 11: Confusion matrix for CF-NoLevel0.

Looking closer, we see that the performance on BEFORE instances is slightly lower than the
performance for AFTER instances. We relate this to the smaller number of training instances
available for the BEFORE label as seen from Table 10.

In future work it will be useful to verify if increasing the number of training instances available
can help to improve the recall of the classifier for instances of these two labels, thereby
eradicating this cluster of errors.

Feature design. The next major cause of mistakes is the misclassification of BEFORE instances
as AFTER. Studying the mis-labeled instances, we realized this is because the features that we
have used neglected to consider modal or copula modifications to the event expressions. For
example, take a look at sentence 25. The relationship between “added” and “early November”
should have been BEFORE but was incorrectly classified as AFTER. The relevant portions of the
dependency parse extracted as a feature for this instance is shown in Figure 4.

He added that final guidelines to be published in early November will deter-
mine whether the bank is in compliance . (2)

root added

. . .

infmod published

. . .

pobj November

Figure 4: Dependency parse of Sentence 2.
The dependency parse feature that we extract is the shortest path between the vertices for
“added” and “November”. The key to interpreting the temporal relationship in this example
however is the copula modifier “to be” in front of “published”.

Without capturing these modifiers, the sentence will appear to read as “He added that final
guidelines published in early November will determine . . . ”. In this reading, “added” takes place
AFTER the time span indicated by “early November”, which explains the mis-classification by
our classifier.

It will be useful following this analysis to study if including the auxiliary modifiers of event
expressions into our parse features can help improve classifier performance.

5Extracted from document wsj_0527 of the TempEval-2 dataset.
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Conclusion

In our study, we target the the main problem which we believe is hampering better performance
for event-temporal relationship classification — lack of sufficient training data. We adopt a
two-prong approach to tackle this problem: 1) by simplifying the feature space with the use
of dependency parses as features to a convolution kernel support vector machine, and 2) by
leveraging on crowdsourcing to get more data to support supervised machine learners.

We show that the classifier design we adopted is competitive when pitted against classifiers
which make use of far more complex mechanics and features. With this as a starting point, we
went on to expand the training data that is available for use via crowdsourcing. Despite the
complexity of the annotation task, novice annotators are able to generate a dataset that helps
improve classifier performance significantly.

Building on our insight of the clausal structure inherent to event and time expressions, we
suggest an effective way to selectively acquire annotations. Our proposal reduces the amount of
data to be annotated by up to 37% without sacrificing classifier performance. We achieved a clas-
sification accuracy of 73.2%, which represents a 8.6% improvement over our very competitive
baseline.
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