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ABSTRACT
Syntactic dependency structures are based on the assumption that there is exactly one node
in the structure for each word in the sentence. However representing elliptical constructions
(e.g. missing verbs) is problematic as the question where the dependents of the elided material
should be attached to has to be solved. In this paper, we present an in-depth study into the
challenges of introducing empty heads into dependency structures during automatic parsing.
Structurally, empty heads provide an attachment site for the dependents of the non-overt
material and thus preserve the linguistically plausible structure of the sentence. We compare
three different (computational) approaches to the introduction of empty heads and evaluate
them against German and Hungarian data. We then conduct a fine-grained error analysis on
the output of one of the approaches to highlight some of the difficulties of the task. We find
that while a clearly defined part of the phenomena can be learned by the parser, more involved
elliptical structures are still mostly out of reach of the automatic tools.
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1 Introduction

Dependency structures (Mel’čuk, 1988) are a versatile formalism if one wants to represent
syntactic structures for languages with free word order. Elliptical structures however can cause
problems for this formalism because they violate a basic assumption, namely that there is
exactly one node in the structure for each word in the sentence. In verbal ellipsis for example,
this problem can break the entire structure because verbs often have dependents, but if the
verb is not present in the sentence and subsequently not present in the structure, where should
the dependents of the verb be attached to? One possibility that has been proposed is the
introduction of zero word forms (Mel’čuk, 2009, 47), i. e. phonetically empty heads that appear
in the structure but not on the surface string and provide an attachment site for the dependents
of the ellipsis. In many languages, these constructions are rather frequent and should be handled
by dependency parsers in a way that makes them easy to use in downstream applications.

Fél liter nem ; elég
half liter not ; enough
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NEG PRED

Fél liter nem volt elég
half liter not was enough
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’half a liter is not enough’ ’half a liter was not enough’

Dabei seien zehn Menschen getötet ; und etwa 100 ; verletzt worden .
In this have ten people killed ; and about 100 ; hurt been .
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’In this, ten people have been killed and about 100 have been hurt.’

Figure 1: Empty heads in Hungarian (top) and German (bottom).

Figure 1 shows examples for two languages, Hungarian and German, where empty heads are
annotated to ensure a linguistically plausible structure. In the top examples, a Hungarian copula
construction is shown. In present tense (the sentence to the left), the copula is not overtly
expressed and therefore represented as a phonetically empty head (;), while in all other tenses
(right example), the copula would be expressed overtly. Since we would like the structure to
be the same for both sentences, an empty head can be used to preserve the parallelism. The
German example on the bottom shows a coordination of two sentences that share the finite
and the passive auxiliary with each other, both represented as a phonetically empty head in the
structure. By introducing empty nodes into the annotation, the parallelism in the underlying
syntactic structure of the two conjuncts is preserved.

We would like to stress that the problem of empty heads in dependency syntax is rather different
from the problem of introducing trace elements previously addressed by work on the English
Penn Treebank (Johnson, 2002; Dienes and Dubey, 2003; Campbell, 2004). The PTB encodes a
lot of different elements that do not show on the surface, but most of these would be leaf nodes
in dependency representation.1

1There is a small number of cases, where the PTB annotates a missing verb (marked as *?*, see Section 4.6 in Bies
et al. (1995)). We found 581 instances of those in the whole corpus, 293 of which were dominated by a VP node. Only
those empty elements correspond to empty heads in a dependency representation since they would normally have
dependents on their own. But in contrast to dependency formalisms, it is not a problem to annotate a head-less phrase
in a phrase-structure formalism.

1082



The aim of this paper is to investigate the problem of automatically predicting these empty
heads in the process of statistical dependency parsing and to shed some light on the challenges
of this problem. For this, we present and evaluate three different methods of introducing empty
heads into dependency structures, one direct approach, where the parser itself decides when to
annotate an empty head, one approach where the information about empty heads is encoded
into the label set of the structure, and one approach where the presence of empty heads is
determined by a classifier run prior to parsing.

The paper is structured as follows: we first review some related work and continue with the
presentation of the three different methods. We then define the metric that we use to measure
the quality of the empty head prediction and use it to evaluate parsing experiments on German
and Hungarian. We conclude with an error analysis and a discussion of the results.

2 Related Work

We are aware of two previous papers where the issue of empty heads has been addressed in the
context of dependency parsing: One is Dukes and Habash (2011) who present a parser for the
Quranic Arabic Dependency Treebank, which also contains empty heads. Unfortunately, they do
not evaluate or discuss the role of empty heads. Their solution of the problem – introducing
a new transition into a transition-based parser – is similar to one of our proposed procedures
(the in-parsing approach). The other work is by Chaitanya et al. (2011), who use hand-crafted
rules to recover empty nodes from the output of a rule-based dependency parser for the Hindi
Dependency Treebank. They achieve good results on some phenomena and a bit lower results on
others, proving that it is indeed possible to treat this problem in syntactic processing. However,
given that their data base is very small, and they used a rule-based, language-specific approach,
the question remains if we can use statistical learning to address this problem.

3 Approaches for Parsing with Empty Heads

The parser that we use for our experiment is basically a best-first parser like the ones described
in (Goldberg and Elhadad, 2010; Tratz and Hovy, 2011), which is trained with the Guided
Learning technique proposed in Shen et al. (2007) embedded in a MIRA framework (Crammer
et al., 2003). The best-first parsing approach has the advantage that it is easy to modify in
order to allow for the introduction of empty heads, while for graph-based parsers (McDonald
et al., 2005) it is not even clear how to do it. The approach is also more suitable here than the
standard transition-based approach (Nivre et al., 2004), since it can build context on both sides
of the current attachment site while it achieves competitive results.

In contrast to the best-first parser in Goldberg and Elhadad (2010), the decoding algorithm is
modified so that it works like the LTAG dependency parser described in Shen and Joshi (2008),
which allows an edge to attach to an inside node of an already built structure. This difference
makes it possible to directly produce a large portion of non-projective structures (e. g. sentence
extraposition or WH-extraction) without having to resort to a swap operation as is done in
Tratz and Hovy (2011). It also increases theoretical decoding complexity to O(n2). However,
there are non-projective structures that cannot be produced by this approach.2 To allow the
derivation of these structures, we reintroduce the swap operation from the parser in Tratz and
Hovy (2011), but during training, the parser is only allowed to apply the swap operation in
case of an ill-nested structure, which leads to a very small number of swaps.

2These structures do not fulfill the well-nestedness condition that is described in Bodirsky et al. (2005); Kuhlmann
and Nivre (2006) and appear for example in German centerfield scrambling structures.
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The feature set of the parser uses the word forms, lemmata, POS tags, and already predicted
dependency labels for the head and its prospective dependent, as well as combinations thereof
for up to three surrounding tokens in the sentence. The same features and combinations are
extracted for up to three surrounding partially built structures. We also add features for the
left-most and right-most dependent of a token, the labels of the dependents, distance features,
and valency features as proposed by Zhang and Nivre (2011) but adapted to the best-first
decoder. For internal feature representation and combination the parser implements the hash
kernel method by Bohnet (2010).

3.1 Empty Head Introduction during Parsing
For the first method, we change the parser so that it can decide for an empty head during the
parsing itself. To the three moves that the standard parser can perform – attach_left(label),
attach_right(label), and swap – we add a fourth move (see Figure 2), that allows the parser
to introduce an empty head for a particular dependent (together with a dependency label).
This is similar in spirit to the parser presented in Dukes and Habash (2011), although they use
a transition-based left to right approach for decoding. When training the parser, the empty
heads in the training data are skipped in the feature extraction as long as they have not been
predicted by the parser, and then added to the sentence as an additional node. If the parser
makes a mistake during training, and the oracle is asked to provide the currently best-scoring
valid action, we force it to defer proposing the introduction of an empty head as long as there is
any other valid action available. This way we ensure that the decision to introduce an empty
head is made only when the maximum syntactic context is available for the decision. During
test time, we do not allow the parser to introduce two empty heads in a row to make sure that
the parser does not enter an infinite loop of predicting empty heads over and over.

1 2 3 4

1 2

3

4

attach left

1

2

3 4

attach right

1 3 2 4

swap

1 2 ;

3

4

empty head

Figure 2: The four possible moves to extend the top configuration (unlabeled).
We add three basic features to the parser that are meant to capture some features of the empty
heads. (1) we add a boolean feature that is true if there is a verb following the current token
in the sentence. (2) we add a boolean feature that is true if there is at least one verb in the
sentence. (3) we add a boolean feature that is true if there is at least one finite verb in the
sentence. All three features are computed based on the POS tags of the tokens in the sentence.
Finally, we also extract features (word form, pos, etc.) from the closest verb to the right and to
the left of the current dependent. The boolean features are supposed to give information if there
is any verb available in the sentence that could play the role of the main verb. Furthermore,
since we assume for some of the elliptical constructions, that the verb that is missing is actually
taking up another verb in the sentence, the latter features may capture this.

3.2 Standard Dependency Parsing with Complex Labels
In the second method, we encode information about empty heads in the label set of the treebank.
Dependents of an empty head are attached to its head and their labels are combined with the
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label of the empty head (see Figure 3). All the trees remain proper dependency trees where
each node in the structure corresponds to a token in the input. The method is thus compatible
with any standard parsing strategy. We apply the best-first parser to the complex-label data
in order to gain a fair comparison with the previous approach. When the parser model with
complex labels is applied to unseen data, it predicts the complex labels in the output, which
then allow us to recover the empty heads. The recovery algorithm simply looks for all daughters
of a node that are labeled with a complex label and introduces an empty node for each subset
of nodes whose label prefixes match.3

A B C ; D

Y

X

Z Z

A B C D

Y X|Z
X|Z

Figure 3: Encoding scheme for complex labels.

The complex label approach allows us to use any standard dependency parser. However,
encoding information into labels needs to be done with caution. The label set can grow quickly,
so the parsers will become much slower and will have a hard time learning the rare labels.

3.3 Preinserting Empty Heads

Besides the in-parsing approaches, we also experimented with a preinserting procedure as
a third method. Here, the empty heads are automatically inserted into the sentence before
parsing based on surface information. The advantage of this approach is again that we can use
any standard dependency parser for parsing the input tokens and inserted empty word forms.

Our first attempt following the approach by (Dienes and Dubey, 2003) from the phrase-structure
parsing literature shows very low accuracies. We attribute this to the different nature of the
empty elements in the standard Penn Treebank setting and our data. The Penn Treebank traces
can be modeled by local features and have fixed string positions (e. g. before to-infinitive
constructions) whereas our empty heads can occur more freely due to the free word order of
German and Hungarian.

We therefore pursue here a clause-based empty head preinsertion procedure since we think that
the decision about inserting an empty head (which is basically the identification of the absence
of the verb) can be made on the clause-level. For this, we implemented a clause boundary
identification module and a classifier that predicts whether an empty word form should be
inserted into a particular clause. Clause boundary identification is a difficult problem (cf. (Sang
and Déjean, 2001)) as clauses usually form a hierarchy – and this hierarchy is important for
predicting the insertion of empty heads. Our clause boundary detector achieves f-scores of 92.6
and 86.8 on the German and Hungarian development datasets respectively. These results are in
line with the state-of-the-art results on the English Penn Treebank (Carreras et al., 2005; Ram
and Lalitha Devi, 2008). If we evaluate only the in-sentence clauses, we get f-scores of 85.4
and 78.2 for German and Hungarian respectively.

In order to decide whether to insert an empty head, we implemented a classifier that decides for
the insertion based on the output of the clause detector. The classifier utilizes the tokens, POS
tags and morphological features of the clause and their patterns (bi- and trigrams) along with
information about the hierarchy of the clauses (the depth of the clause and covered clauses).

3This is not a completely reversible procedure since we cannot recover two different empty nodes if they are sisters
and happen to be labeled by the same label. However, this is a rare case in the treebanks (twice in the German treebank,
five times in the Hungarian treebank).
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The classifier achieves f-scores of 42.3 and 70.1 on the German and Hungarian development
datasets respectively.

We use simple rules for finding the position inside the clause where the empty head should be
inserted. For German, we insert it after the first noun sequence (which is an approximation of
the place of the verb in the verb-second word order of German). For Hungarian, the manual
annotation of the position of the empty word forms is quite irregular and we insert them at the
beginning of the clause. Finally, we train the best-first parser on the original training dataset
containing the gold standard empty heads and use it to parse the sentences that contain the
automatically inserted empty heads from the preinserter.

4 Experiments

In order to test the parsing methods, we performed two experiments each: we trained the
parser on the German TiGer corpus using the dependency representation by Seeker and Kuhn
(2012) , and on the Szeged Dependency Treebank of Hungarian (Vincze et al., 2010), both
of which data sets explicitly represent empty heads in the dependency trees. Table 1 shows
the data sizes and the splits we used for the experiment. The German data was preprocessed
(lemma, POS, morphology) with the mate-tools,4 the Hungarian data comes with automatic
annotation.5

training development test
data set # sentences # sents # empty # sents # empty # sents # empty
German 50,474 36,000 2,618 2,000 117 10,472 722
Hungarian 81,960 61,034 14,850 11,688 2,536 9,238 2,106

Table 1: Data sets

4.1 Evaluation Method

Since the number of edges in the gold standard does not always equal the number of edges
in the parser output if we allow the introduction of empty heads, we cannot use attachment
accuracy anymore. To evaluate the recovery of empty heads, we therefore introduce three
measures, which focus on different characteristics of the empty heads.6

The first metric (ATTe) is the labeled attachment score for empty heads only, where we count
the correct attachment to the head as well as the correct attachment of the daughters of the
empty head. A correct edge is thereby an edge that connects the same two tokens as in the gold
standard, and that has the same label as the gold-standard edge, similar as in the ELAS score
proposed by Dukes and Habash (2011), disregarding however the POS tag. One problem with
the ELAS score is that it is not clear what happens if there is more than one empty head in the
output of the parser or in the gold standard. In these cases, we compute the mapping of parser
output empty heads to gold standard empty heads that maximizes the final score. This way, the
evaluation is not skewed if the empty head is at the wrong string position, or if the number of
empty heads in the gold standard differs from the number of empty heads in the parser output.
As an extension to this metric, we define ATTall, which applies the ATTe to the whole node set
in order to see the complete picture including the empty heads. For both metrics, we compute
precision, recall, and f-score. In the last measure, cLAS, we use standard LAS by collapsing the

4http://code.google.com/p/mate-tools
5Our data sets and the evaluation tool will be made available on www.ims.uni-stuttgart.de/~seeker
6We do not evaluate string position since empty heads are only important for the structure.
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empty heads in both parser output and gold standard using the complex label encoding. cLAS
is a way of applying LAS to our parser output.

4.2 Experimental Results

The parser was trained on the training sets using 10 iterations and was then tested on the test
sets. Table 2 presents the results in terms of the measures that we defined in Section 4.1.

German Hungarian
prec rec f1 acc prec rec f1 acc

direct parsing ATTe 56.81 24.46 34.20 69.08 63.07 65.94
ATTall 88.90 88.66 88.78 85.67 85.56 85.61
cLAS 88.90 85.28

complex labels ATTe 58.82 28.77 38.64 67.56 59.36 63.20
ATTall 88.85 88.68 88.76 85.36 85.36 85.36
cLAS 88.90 85.18

preinsertion ATTe 23.22 25.75 24.42 68.40 56.67 61.98
ATTall 88.09 88.11 88.10 85.25 85.02 85.14
cLAS 88.31 84.89

Table 2: Evaluation results on test sets.
Two general trends can be seen from the results. First, the preinsertion approach performs
worse than the other two approaches. It is however not clear which of the other two is superior
since for German, the complex label approach performs better while for Hungarian, the direct
parsing approach comes out first. The second trend is that generally, the precision of the
approach is much better than the recall, indicating that there are some phenomena that are
relatively easy to learn resulting in a high precision, but most of the empty heads are not even
recognized in the first place, hence the low recall. We also see that all approaches operate on a
much higher level for Hungarian than for German.

5 Error Analysis

In this section, we perform a short error analysis to hint at some of the problems. We use the
development sets of both data sets and the output of the direct parsing approach. Table 3 shows
the performance on the development sets.

German Hungarian
prec rec f1 acc prec rec f1 acc

ATTe 59.35 25.21 35.38 65.53 64.90 65.21
ATTall 89.17 88.94 89.05 85.17 85.17 85.17
cLAS 89.15 84.89

Table 3: Evaluation results on development sets.

One problem that we find when reviewing the output is that the parser often fails because of
incorrect part-of-speech tagging. Sometimes, verbs are not recognized, which then prompts
the parser to predict an empty head instead. Sometimes, other words are mistagged as verbs,
which then prevents the parser from predicting an empty head. Table 4 shows the performance
of the direct parsing approach when run on gold POS tags. The effect is greater for German
than for Hungarian, but it is not substantial in both languages, showing that the parser relies
strongly on POS information.

Another effect we find in the output is that some empty heads seem to be easier to predict
than others. We illustrate this on the Hungarian data, where a coarse classification into empty
copula (VAN) and other ellipsis (ELL) is annotated in the gold standard. Table 5 shows the
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German Hungarian
prec rec f1 prec rec f1

predicted POS ATTe 59.35 25.21 35.38 65.53 64.90 65.21
gold POS ATTe 70.59 32.88 44.86 68.57 68.68 68.62

Table 4: Evaluation results on development sets using gold POS annotation.

performance on sentences that contain exactly one empty head in the gold standard.7 The
results indicate that empty copula are easier to learn for the parser than the more involved
ellipses, which could be explained by the stronger grammaticalization of the former. Generally,
the parser seems to rely heavily on lexical cues that do not vary much.

ATTe
#sentence prec rec f1

VAN 1760 83.64 69.23 75.76
ELL 307 80.18 42.56 55.61

Table 5: Results achieved on two different
types of empty heads (Hungarian).

prec rec f1 acc
ATTe 95.37 66.16 78.13
ATTall 98.88 98.73 98.81
cLAS 98.85

Table 6: Applying the direct parsing ap-
proach to its own training set (German).

Finally, we show the performance of the direct parsing approach when applied to its own
training set in German. This can be instructive to see if the features of the statistical model
actually capture the correct information to identify empty heads. The results (Table 6) suggest
that they do not. A standard statistical dependency parser (without empty heads) usually
achieves scores in the high 90s on its own training data. Results clearly show that work in the
feature set of the parser is necessary to predict empty heads more accurately, but also that the
standard syntactic features are not capable of modeling the phenomenon.

Conclusion and Future Work

Empty heads represent material that is missing on the surface of the sentence but is understood
and usually easily reconstructible by humans. Formally, empty heads provide attachment
sites for their overtly expressed dependents and thus help representing syntactic structures
of elliptic constructions in the same way as their non-elliptic counterparts. In this paper, we
evaluated three methods of introducing empty heads into a dependency structure, a direct
approach during parsing, an encoding scheme that allows the reconstruction of empty heads
after standard parsing, and a preinsertion approach where the empty heads are predicted prior
to parsing. All three methods were evaluated on German and Hungarian.

The preinsertion method is outperformed by the two other approaches, but which of these is
superior remains to be seen. In general, no method performs on a satisfactory level indicating
that empty heads are a difficult phenomenon. Our error analysis shows that standard features
for statistical dependency parsing are not able to model empty heads convincingly. One thing
that we can learn from our investigation is, that it is probably wise to separate the empty heads
that we have in the data into at least two parts, namely the part that contains constructions like
the Hungarian copula (and probably similar local, more grammaticized constructions), and the
other more involved ellipses. The parser seems to be able to predict missing copula reasonably
well and this can be used to predict more accessible output structures. Since the construction
also appears in other languages, e. g. the Slavic languages, this may turn out useful.

7We only choose these sentences, because the type of a predicted empty head is not straight forward to determine
automatically.
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