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Abstract

Machine Translation (MT) Quality Estimation (QE) aims to automatically measure the quality
of MT system output without reference translations. In spite of the progress achieved in re-
cent years, current MT QE systems are not capable of dealing with data coming from different
train/test distributions or domains, and scenarios in which training data is scarce. We investigate
different multitask learning methods that can cope with such limitations and show that they over-
come current state-of-the-art methods in real-world conditions where training and test data come
from different domains.

1 Introduction

Machine Translation (MT) Quality Estimation (QE) aims to automatically predict the quality of MT
output without using reference translations (Blatz et al., 2003; Specia et al., 2009). QE systems usually
employ supervised machine learning models that use different information extracted from (source, target)
sentence pairs as features along with quality scores as labels. The notion of quality that these models
measure can be indicated by different scores. Some examples are the average number of edits required
to post-edit the MT output, i.e., human translation edit rate1 (HTER (Snover et al., 2006)), and the time
(in seconds) required to post-edit a translation produced by an MT system (Specia, 2011).

Research on QE has received a strong boost in recent years due to the increase in the usage of MT
systems in real-world applications. Automatic and reference-free MT quality prediction demonstrated
to be useful for different applications, such as: deciding whether the translation output can be published
without post-editing (Soricut and Echihabi, 2010), filtering out low-quality translation suggestions that
should be rewritten from scratch (Specia et al., 2009), selecting the best translation output from a pool
of MT systems (Specia et al., 2010), and informing readers of the translation whether it is reliable or not
(Turchi et al., 2012). Another example is the computer-assisted translation (CAT) scenario, in which it
might be necessary to predict the quality of translation suggestions generated by different MT systems
to support the activity of post editors working with different genres of text.

The dominant QE framework presents some characteristics that can limit models’ applicability in
such real-world scenarios. First, the scores used as training labels (HTER, time) are costly to obtain
because they are derived from manual post-editions of MT output. Such requirement makes it difficult
to develop models for domains in which there is a limited amount of labeled data. Second, the learning
methods currently used (for instance in the framework of QE shared evaluation campaigns)2 assume that
training and test data are sampled from the same distribution. Though reasonable as a first evaluation
setting to promote research in the field, this controlled scenario is not realistic as different data in real-
world applications might be post-edited by different translators, the translations might be generated by
different MT systems and the documents being translated might belong to different domains or genres. To

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1Edit distance is calculated as the number of edits (word insertions, deletions, substitutions, and shifts) divided by the
number of words in the reference. Lower HTER values indicate better translations.

2In the last two editions of the yearly Workshop on Machine Translation, several QE shared tasks have been proposed
(Callison-Burch et al., 2012; Bojar et al., 2013).
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overcome these limitations a plausible research objective is to exploit techniques that: (i) allow domains
and distributions of features to be different between training and test data, and (ii) that cope with the
scarce amount of training labels by sharing information across domains, a common scenario for transfer
learning.

In this paper we investigate the use of techniques that can exploit the training instances from different
domains to learn a QE model for a specific target domain for which there is a small amount of labeled
data. In particular, we are interested in approaches that allow not only learning from one single source
domain but also from multiple source domains simultaneously, by leveraging the labels from all available
data to improve results in a target domain.

Given these requirements, we experiment with different multitask learning techniques that perform
transfer learning via a common task structure (domain relatedness). Furthermore, we employ an approach
based on feature augmentation that has been successfully used in other natural language processing tasks.
We present a series of experiments over three domains with increasing amounts of training data, showing
that our adaptive approaches outperform competitive baselines.

The contributions of our work are: (i) a first exploration of techniques that overcome the limitation
of current QE learning methods when dealing with data with different training and test distributions and
domains, and (ii) an empirical verification of the amount of training data required by such techniques to
outperform competitive baselines on different target domains. To the best of our knowledge, this is the
first work addressing the challenges posed by domain adaptation in MT QE.

2 Related Work

Quality estimation has recently gained increasing attention, also boosted by two evaluation campaigns
organized within the Workshop on Machine Translation (WMT) (Callison-Burch et al., 2012; Bojar et
al., 2013). The bulk of work done so far has focused on the controlled WMT evaluation framework and,
in particular, on two major aspects of the problem: feature engineering and machine learning methods.

Feature engineering accounts for linguistically-based predictors that aim to model different perspec-
tives of the quality estimation problem. The research ranges from identifying indicators that approximate
the complexity of translating the source sentence and designing features that model the fluency of the
automatically generated translation, to linguistically motivated measures that estimate how adequate the
translation is in comparison to the source sentence in terms of meaning (Blatz et al., 2003; Mehdad et
al., 2012; Hardmeier et al., 2012; Rubino et al., 2012; Specia et al., 2012; de Souza et al., 2013a).

State-of-the-art QE explores different supervised linear or non-linear learning methods for regression
or classification such as Support Vector Machines (SVM), different types of Decision Trees, Neural
Networks, Elastic-Net, Gaussian Processes, Naive Bayes, among others (Specia et al., 2009; Buck,
2012; Beck et al., 2013; Souza et al., 2014). Another aspect related to the learning methods that has
received attention is the optimal selection of features in order to overcome issues related with the high-
dimensionality of the feature space (Soricut et al., 2012; de Souza et al., 2013a; Beck et al., 2013; de
Souza et al., 2013b).

Despite constant improvements, such learning methods have limitations. The main one is that they
assume that both training and test data are independently and identically distributed. As a consequence,
when they are applied to data from a different distribution or domain they show poor performance. This
limitation harms the performance of QE systems for several real-world applications, such as CAT envi-
ronments. Advanced CAT systems currently integrate suggestions obtained from MT engines with those
derived from translation memories (TMs). In such framework, the compelling need to speed up the trans-
lation process and reduce its costs by presenting human translators with good-quality suggestions raises
interesting research challenges for the QE community. In such environments, translation jobs come from
different domains that might be translated by different MT systems and are routed to professional transla-
tors with different idiolect, background and quality standards (Turchi et al., 2013). Such variability calls
for flexible and adaptive QE solutions by investigating two directions: (i) modeling translator behaviour
(Turchi et al., 2014) and (ii) maximize the learning capabilities from all the available data. The second
research objective motivates our investigation on methods that allow the training and test domains and
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the distributions to be different.
Recent work in QE focused on aspects that are problematic even in the controlled WMT scenario, and

are closely related to the flexibility/adaptability issue. Focusing on the first of the two aforementioned
directions (i.e. modeling translators’ behaviour), Cohn and Specia (2013) propose a Multitask Gaussian
Process method that jointly learns a series of annotator-specific models and that outperforms models
trained for each annotator. Our work differs from theirs in that we are interested in the latter research
direction (i.e. coping with domain and distribution diversity) and we use in and out-of-domain data to
learn robust in-domain models. Our scenario represents a more challenging setting than the one tackled
in (Cohn and Specia, 2013), which does not consider different domains.

In transfer learning there are many techniques suitable to fulfill our requirements. The aim of transfer
learning is to extract the knowledge from one or more source tasks and apply it to a target task (Pan
and Yang, 2010). One type of transfer learning is multitask learning (MTL), which uses domain-specific
training signals of related tasks to improve model generalization (Caruana, 1997). Although it was not
originally thought for transferring knowledge to a new task, MTL can be used to achieve this objective
due to its capability to capture task relatedness, which is important knowledge that can be applied to a
new task (Jiang, 2009).

Domain adaptation is a kind of transfer learning in which source and target domains (i.e. training and
test) are different but the tasks are the same (Pan and Yang, 2010). The domain adaptation techniques
that inspire our work have been successfully applied to a variety of NLP tasks (Blitzer et al., 2006;
Jiang and Zhai, 2007). For instance, an effective solution for supervised domain adaptation, EasyAdapt
(SVR FEDA henceforth), was proposed in (Daumé III, 2007) and applied to named entity recognition,
part-of-speech tagging and shallow parsing. The approach transforms the domain adaptation problem
into a standard learning problem by augmenting the source and target feature set. The feature space is
transformed to be a cross-product of the features of the source and target domains augmented with the
original target domain features. In supervised domain adaptation one has access to out-of-domain labels
and wants to leverage a small amount of available in-domain labeled data to train a model (Daumé III,
2007), the case of this study. This is different from the semi-supervised case in which in-domain labels
are not available.

3 Adaptation for QE

An important assumption in MTL is that different tasks (domains in our case) are correlated via a certain
structure. Examples of such structures are the hidden layers in a neural network (Caruana, 1997) and
shared feature representation (Argyriou et al., 2007) among others. This common structure allows for
knowledge transfer among tasks and has been demonstrated to improve model generalization over single
task learning (STL) for different problems in different areas. Under this scenario, several assumptions
can be made about the relatedness among the tasks, leading to different transfer structures. We explore
three approaches to MTL that deal with task relatedness in different ways. These are the “Dirty” approach
to MTL (Jalali et al., 2010), Sparse Trace MTL (Chen et al., 2012) and Robust MTL (Chen et al., 2011).
The three approaches use different regularization techniques that capture task relatedness using norms
over the weights of the features.

Before describing the three approaches, we introduce some basic notation similar to (Chen
et al., 2011). In MTL there are T tasks and each task t ∈ T has m training samples
{(x(t)

1 , y
(t)
1 ), . . . , (x(t)

m , y
(t)
m )}, with x(t)

i ∈ Rd where d is the number of features and y(t)
i ∈ R is the

output (the response variable or label). The input features and labels are stacked together to form two
different matrices X(t) = [x(t)

1 , . . . , x
(t)
m ] and Y (t) = [x(t)

1 , . . . , x
(t)
m ], respectively. The weights of the

features for each task are represented by W , where each column corresponds to a task and each row
corresponds to a feature.

The “Dirty” approach to MTL follows the idea that different tasks may share the same discriminative
features (Argyriou et al., 2007). However, it also considers that different tasks might have different
discriminative features that are inherent to each task. Therefore, the method encourages shared-sparsity
among tasks and among features in each task. It decomposes W into two components, one is a row-
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sparsed matrix that corresponds to the features shared among the tasks and the other is an element-wise
sparse matrix that corresponds to the non-shared features that are important for each task independently.
More formally, the “Dirty” approach is explained by Equation 1.

min
W

T∑
t=1

||(W (t)X(t) − Y (t))||22 + λs||S||1 + λb||B||1,∞ subject to: W = S +B (1)

where ||(W (t)X(t) − Y (t))||22 is the least squares loss function, S is the regularization term that en-
courages element-wise sparsity and B is the block-structured row-sparsity regularizer. The ||.||2 is the
l2-norm (Euclidean distance), ||.||1 is the l1-norm (given by

∑
i=1
|xi|) and ||.||1,∞ is the row grouped l1-

norm. The λs and λb are non-negative trade-off parameters that control the amount of regularization
applied to S and B, respectively.

Sparse Trace MTL considers the problem of learning incoherent sparse and low-rank patterns from
multiple related tasks. This approach captures task relationship via a shared low-rank structure of the
weight matrix W . As computing the low-rank structure of a matrix leads to a NP-hard optimization
problem, Chen et al. (2012) proposed to compute the trace norm as a surrogate, making the optimization
problem tractable. In addition to learning the low-rank patterns, this method also considers the fact that
different tasks may have different inherent discriminative features. It decomposes W into two compo-
nents: S, which models element-wise sparsity, and Q, which captures task relationship via the trace
norm. The convex problem minimized by Sparse Trace is given in Equation 2.

min
W

T∑
t=1

||(W (t)X(t) − Y (t))||22 + λs||S||1 subject to: W = S +Q, ||Q||∗ < λp (2)

where ||.||∗ is the trace norm, given by the sum of the singular values σi of W , i.e., ||W ||∗ =∑
i=1

σi(W ). Here, λp controls the rank of Q and λs controls the sparsity of S.

The key assumption in MTL is that tasks are related in some way. However, this assumption might not
hold for a series of real-world problems. In situations in which tasks are not related a negative transfer
of information among tasks might occur, harming the generalization of the model. One way to deal
with this problem is to: (i) group related tasks in one structure and share knowledge among them, and
(ii) identify irrelevant tasks maintaining them in a different group that does not share information with
the first group. This is the idea of Robust MTL (RMTL henceforth). The algorithm approximates task
relatedness via a low-rank structure like Sparse Trace and identifies outlier tasks using a group-sparse
structure (column-sparse, at task level). Robust MTL is described by Equation 3. It employs a non-
negative linear combination of the trace norm (the task relatedness component L) and a column-sparse
structure induced by the l1,2-norm (the outlier task detection component S). If a task is an outlier it will
have non-zero entries in S.

min
W

T∑
t=1

||(W (t)X(t) − Y (t))||22 + λl||L||∗ + λs||S||1,2 subject to: W = L+ S (3)

where ||S||1,2 is the group regularizer that induces sparsity on the tasks.

4 Experimental Setting

In this section we describe the data used for our experiments, the features extracted, the set up of the
learning methods, the baselines used for comparison and the evaluation of the models. The goal of our
experiments is to show that the methods presented in Section 3 outperform competitive baselines and
standard QE learning methods that are not capable of adapting to different domains. We experiment with
three different domains of comparable size and evaluate the performance of the adaptive methods and the
standard techniques with different amounts of training data. The MTL models described in section 3 are
trained with the Malsar toolkit implementation (Zhou et al., 2012). The hyper-parameters are optimized
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using 5-fold cross-validation in a grid search procedure. The parameter values are searched in an interval
ranging from 10−3 to 103.

4.1 Data

Our experiments focus on the English-French language pair and encompass three very different domains:
newswire text (henceforth News), transcriptions of Technology Entertainment Design talks (TED) and
Information Technology manuals (IT). Such domains are a challenging combination for adaptive systems
since they come from very different sources spanning speech and written discourse (TED and News/IT,
respectively) as well as a very well defined and controlled vocabulary in the case of IT.

Each domain is composed of 363 tuples formed by the source sentence in English, the French trans-
lation produced by an MT system and a human post-edition of the translated sentence. For each pair
(translation, post-edition) we use as labels the HTER score computed with TERCpp3. For the three do-
mains we use half of the data for training (181 instances) and half of the data for testing (182 instances).
The limited amount of instances for training contrasts with the 800 or more instances of the WMT evalu-
ation campaigns and is closer to real-world applications where the availability of large and representative
training sets is far from being guaranteed (e.g. the CAT scenario).

The sentence tuples for the first two domains are randomly sampled from the Trace corpus4. The
translations were generated by two different MT systems, a state-of-the-art phrase-based statistical MT
system and a commercial rule-based system. Furthermore, the translations were post-edited by up to four
different translators, as described in (Wisniewski et al., 2013).

Domain No. of tokens Vocab. size Avg. sent. length
TED source 6858 1659 19
TED target 7016 1828 19
IT source 3310 1004 9
IT target 3134 1049 8
News source 7605 2273 21
News target 8230 2346 23

Table 1: Datasets statistics for each domain.

The TED talks domain is formed by subtitles of several talks in a range of topics presented in the TED
conferences. The complete dataset has been used for MT and automatic speech recognition systems
evaluation within the International Workshop on Spoken Language Translation (IWSLT). The News
domain is formed by newswire text used in WMT translation campaigns and covers different topics. The
IT texts come from a software user manual translated by a statistical MT system based on the state-of-
the-art phrase-based Moses toolkit (Koehn et al., 2007) trained on about 2M parallel sentences. The
post-editions were collected from one professional translator operating on the Matecat5 CAT tool in
real working conditions. Table 1 provides macro-indicators (number of tokens, vocabulary size, average
sentence length) that evidence the large difference between the domains addressed by our experiments
and give an idea of the difficulty of the task.

A peculiarity of the TED domain is that it is formed by manual transcriptions of speech translated by
different MT systems, configuring a different type of discourse than News and IT. In TED, the vocabulary
size in the source and target sentences is lower than that of the News domain but higher than IT. News
presents the most varied vocabulary, which is an evidence of the more varied lexical choice represented
by the several topics that compose the domain. Moreover, News has the highest average sentence length,
a characteristic of non-technical written discourse, which tends to have longer sentences than spoken
discourse and domains dominated by technical jargon. Such a characteristic is exactly what differentiates
IT from the other two domains. IT sentences are technical and present a reduced average number of

3http://sourceforge.net/projects/tercpp/
4http://anrtrace.limsi.fr/trace_postedit.tar.bz2
5www.matecat.com
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words, as evidenced by the vocabulary size (the smallest among the three domains). These numbers
suggest a divergence between IT and the other two domains, possibly making adaptation more difficult.

4.2 Features
For all the experiments we use the same feature set composed of seventeen features proposed in (Specia et
al., 2009). The set is formed by features that model the complexity of translating the source sentence (e.g.
the average source token length or the number of tokens in the source sentence), and the fluency of the
translated sentence produced by the MT system (e.g. the language model probability of the translation).
The decision to use this feature set is motivated by the fact that it demonstrated to be robust across
language pairs, MT systems and text domains (Specia et al., 2009). The 17 features are:

• number of tokens in the source sentence and in the generated translation;

• average source token length;

• average number of occurences of the target word within the generated translation;

• language model probability of the source sentence and generated translation;

• average number of translations per source word in the sentence: as given by IBM 1 model thresh-
olded so that P (t|s) > 0.2 weighted by the inverse frequency of each word in the source side of the
SMT training corpus©;

• average number of translations per source word in the sentence: as given by IBM 1 model thresh-
olded so that P (t|s) > 0.01 weighted by the inverse frequency of each word in the source side of
the SMT training corpus;

• percentage of unigrams©, bigrams and trigrams© in the first quartile of frequency (lower fre-
quency words) in a corpus of the source language;

• percentage of unigrams©, bigrams and trigrams in the fourth quartile of frequency (higher fre-
quency words) in a corpus of the source language;

• percentage of unigrams in the source sentence seen in the source side of the SMT training corpus;

• number of punctuation marks in the source sentence and in the hypothesis translation;

4.3 Baselines
As a term of comparison, we consider these baselines in our experiments. A simple to implement but
difficult to beat baseline when dealing with regression on tasks with different distributions is to compute
the mean of the training labels and use it as the prediction for each testing point (Rubino et al., 2013).
Hereafter we refer to this baseline as µ. Since supervised domain adaptation techniques should outper-
form models that are trained only on the available in-domain data, we also use as baseline the regressor
built only on the available in-domain data (SVR in-domain). Furthermore, as a third baseline, we train a
regressor by pooling together training data of all domains, combining source and target data without any
kind of task relationship mechanism (SVR Pooling).

The baselines are trained on the feature set described earlier in Section 4.2 with an SVM regression
(SVR) method using the implementation of Scikit-learn (Pedregosa et al., 2011). The radial basis func-
tion (RBF) kernel is used for all baselines. The hyper-parameters of the model are optimized using
randomized search optimization process with 50 iterations as described in (Bergstra and Bengio, 2012)
and used previously for QE in (de Souza et al., 2013a). The best parameters are found using 5-fold
cross-validation on the training data and ε, γ and C are sampled from exponential distributions scaled at
0.1 for the first two parameters and scaled at 100 for the last one. It is important to notice that the SVR
with RBF kernel methods learn non-linear models that have been shown to perform better than linear
models on the set of features used for predicting HTER. On the contrary, the MTL methods presented in
Section 3 are methods that do not explore kernels or any other kind of non-linear learning method.
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Source / Target ITtgt Newstgt TEDtgt

ITsrc 0.2081 0.2341 0.2232
Newssrc 0.2368 0.1690 0.2130
TEDsrc 0.2183 0.2263 0.1928

Table 2: Results of the SVR in-domain baseline trained and evaluated in each domain (average of 50
different shuffles). Rows represent the domain data used to train the model and columns represent the
domain data used to evaluate the model. Scores are MAE.

4.4 Evaluation
The accuracy of the models is evaluated with the mean absolute error (MAE), which was also used in
previous work and in the WMT QE shared tasks (Bojar et al., 2013). MAE is the average of the absolute
difference between the prediction ŷi of a model and the gold standard response yi (Equation 4). As it is
an error measure, lower values mean better performance.

MAE =
1
m

m∑
i=1

|ŷi − yi| (4)

To test the statistical significance of our results we need to perform comparisons of multiple models.
In addition, we would like to test the significance over different training amounts. Given these require-
ments we need to perform multiple hypothesis tests instead of paired tests. It has been shown that for
comparisons of multiple machine learning models, the recommended approach is to use a non-parametric
multiple hypothesis test followed by a post-hoc analysis that compares each pair of hypothesis (Demšar,
2006). In our experiments we use the Friedman test (Friedman, 1937; Friedman, 1940) followed by a
post-hoc analysis of the pairs of regressors using Holm’s procedure (Holm, 1979) to perform the pairwise
comparisons when the null hypothesis is rejected. All tests for both Friedman and post-hoc analysis are
run with α = 0.05. For more details about these methods, we refer the reader to (Demšar, 2006; Garcia
and Herrera, 2008) which provide a complete review about the application of multiple hypothesis testing
to machine learning methods.

5 Results and Discussion

Our experiments are organized as follows. First, we evaluate the performance of single task learning
methods on different cross-domain experiments. Then, we report the evaluation for the multitask learning
methods and discuss the results.

5.1 Single Task Learning
With the objective of having an insight about the difference between the domains, we train the SVR
in-domain baseline with all available training data for each domain and evaluate its performance on the
same domain and in the two remaining domains.

Results are reported in Table 2, where the diagonal shows the figures for the in-domain evaluation.
These numbers suggest that the IT domain configures a more difficult challenge for the learning algo-
rithm. The IT in-domain model (ITsrc-ITtgt) presents a performance 21% inferior to News and 8%
inferior to TED. For all models trained on a source domain different than the target domain there is a
drop in performance, as it is expected from a system that assumes that training and test data are sampled
from the same distribution. In addition, when predicting IT using the model trained on News, we have a
perfomance drop of 13% whereas using the model trained on TED the performance drops up to 4%.

5.2 Multitask learning
We run the baselines described in Section 4.3 and the methods described in Section 3 on different
amounts of training data, ranging from 18 to 181 instances (10% and 100%, respectively). The mo-
tivation is to verify how much training data is required by the MTL methods to outperform the baselines
for a target domain. Table 3 presents the results for the three domains with models trained on 30, 50 and
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100% of the training data (54, 90 and 181 instances, respectively). Each method was run on 50 different
train/test splits of the data in order to account for the variability of points in each split.

Method TED News IT
30 % of training data (54 instances)

mean 0.1951 0.1711 0.2174
SVR In-Domain 0.2013 0.1753 0.2235
SVR Pooling 0.1962 0.1899 0.2201
SVR FEDA 0.1952 0.1839 0.2193
MTL Dirty 0.1954 0.1708 0.2193
MTL SparseTrace 0.1976 0.1743 0.2222
MTL RMTL 0.1946 0.1685 0.2162

50% of training data (90 instances)
mean 0.1943 0.1707 0.2170
SVR In-Domain 0.1976 0.1711 0.2183
SVR Pooling 0.1951 0.1865 0.2191
SVR FEDA 0.1937 0.1806 0.2161
MTL Dirty 0.1927 0.1678 0.2148
MTL SparseTrace 0.1922 0.1672 0.2157
MTL RMTL 0.1878 0.1653 0.2119

100% of training data (181 instances)
mean 0.1936 0.1690 0.2162
SVR In-Domain 0.1928 0.1690 0.2081
SVR Pooling 0.1927 0.1849 0.2203
SVR FEDA 0.1908 0.1757 0.2107
MTL Dirty 0.1878 0.1666 0.2083
MTL SparseTrace 0.1881 0.1661 0.2094
MTL RMTL 0.1846 0.1653 0.2075

Table 3: Average performance of fifty runs
of the models on different train and test splits
with 30, 50 and 100 percent of training data.
The average scores reported are the MAE.

Figure 1: Visualization of the RMTL task outlier
model when trained on all the 181 instances of
training data. Cells with darker shades are closer
to zero. Cells with lighter shades are closer to one.
Columns with only black entries are considered in-
lier tasks (domains). From left to right, columns
correspond to News, TED and IT domains. The
first 17 rows correspond to the features used to
train the model and the last row in corresponds to
the bias term.

For all three domains, a general trend is that MTL RMTL is the method that reaches the lowest MAE
when compared to all the other models. Given the difference among the domains, it is very likely that
MTL Dirty and MTL SparseTrace suffer from the negative transfer problem (the assumption that all
tasks are similar does not hold). MTL RMTL is the only method among the methods presented here that
copes with negative transfer among tasks. The significance tests indicate that MTL RMTL improvements
are statistically significant with respect to all baselines depending on the range of training data used to
compute the test.

• For TED, the Friedman test rejects the null hypothesis with p = 4.62−5. Post-hoc analysis indicates
that there are differences statistically significant between MTL RMTL and all the three baselines
with p ≤ 0.002.

• For News, the Friedman test measures significant differences with p = 1.14−9 and the post-hoc
analysis indicates that MTL RMTL is statistically significant with respect to SVR in-domain and
SVR Pooling with p = 0.002 for varying amounts of training data from 10 to 100%. As can be seen
in Figure 2, MTL RMTL starts with a very high MAE using 10% of the data (approximately 0.21
MAE) but improves dramatically with 20% of the data. Calculating the significance test with 20 to
100% of training data, MTL RMTL is significantly better than all baselines with p ≤ 2.89−10.

• For IT, in a similar situation to the News domain, RMTL is significantly better than all baselines
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trained on 30% to 100% of the training data (Friedman test’s p = 2.86−4 and post-hoc analysis’
p ≤ 3.73−7).

Another observed trend is that the MTL models benefit from increasing amounts of training data.
MTL RMTL has an improvement in performance of 5.13% for TED, 4% for News and 1.85% for IT
when trained on 100% of the training data in comparison with the model trained on 30% of training data.

18 36 54 72 90 108 126 144 162 181
Training data points

0.16

0.17

0.18

0.19

0.20

0.21

0.22

M
A
E

news as target domain

Mean
SVR RBF in-domain
SVR Pooling
SVR FEDA
MTL Dirty
MTL SparseTrace
MTL RMTL

Figure 2: Learning curves for the News domain.

The results for the IT domain are in line with the in-domain experiments in which we observed that
IT is a more challenging domain in comparison to TED and News. The MAE of IT is always higher
than for the other domains on in-domain and MTL experiments. Another evidence of this is the model
learned by the RMTL method when using all training data and run on one of the 50 training/test splits. A
graphic representation of the RMTL outlier task detection component (described in Section 3) is shown
in Figure 1.

From left to right, each column represents News, TED, and IT domains, respectively, while each row is
the instantiation of a feature in the corresponding task. Columns with non-black entries represent outlier
tasks. The highest number of entries with lighter shades is in the third column, IT. Several features in
this task are considered outliers with respect to the same features in the other tasks. Consequently, the
learning method takes the weights into consideration to a greater extent when learned with the outlier
model for the IT domain. Entries with the lightest shades in the IT domain correspond to the features
marked with© in Section 4.2. These outlier features are directly affected by the length of the sentences
on which they are computed (source or target) given that the number of tokens influences the final value
of the feature. This outcome goes in the same direction of our analysis of the three domains (Section 4.1)
that indicates a very different vocabulary size and average sentence length for IT when compared to the
other two domains.

To a lesser extent than IT, News and TED domains also present a few lighter-shaded entries in the
outlier component (1st and 2nd column). This suggests that MTL RMTL was capable of transfering
information among the domains in a more efficient way than the other MTL methods analyzed.
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Overall the experiments presented show encouraging results in the direction of coping with QE data
coming from different domains/genres, translated by different MT systems and post-edited by different
translators. Results show that even in such difficult conditions, the methods investigated are capable of
outperforming competitive baselines based on non-linear models on different domains. As a rationale,
models that consider not only similarity between the domains but also deal with some sort of dissimilarity
should be considered. This is the case of the best performing method, MTL RMTL, which identifies
outlier tasks in order to avoid negative transfer among tasks.

6 Conclusion

In this work we presented an investigation of methods that overcome limitations presented by current
MT QE state-of-the-art systems when applied to real world conditions. In such scenarios (e.g. CAT
environment) the requirements are two-fold: (i) learning in the presence of different train/test feature
and label distributions and across different domains/genres, and (ii) the capability of learning with scarce
training data. In our experiments, we explored transfer learning methods, in particular multitask learning,
and we showed that such methods can cope with the needs of real-world scenarios.

We showed that multitask learning methods are capable to learn robust models for three different
domains that perform better than three strong baselines trained on the same amount of data. The methods
explored here benefit from increasing amounts of training data but also perform well when operating
with very limited amounts of data. We believe that the results obtained in this first exploration of model
adaptation for the problem can encourage the MT QE community to shift the focus from controlled
scenarios to more applicable, real-world contexts that require more robust methods.
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Janez Demšar. 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. The Journal of Machine
Learning Research, 7:1–30, December.

Milton Friedman. 1937. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of
Variance. Journal of the American Statistical Association, 32(200):675–701.

Milton Friedman. 1940. A Comparison of Alternative Tests of Significance for the Problem of m Rankings. The
Annals of Mathematical Statistics, 11(1):86–92.

Salvador Garcia and Francisco Herrera. 2008. An Extension on ”Statistical Comparisons of Classifiers over
Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research, 9:2677–2694.

Christian Hardmeier, Joakim Nivre, and Jorg Tiedemann. 2012. Tree Kernels for Machine Translation Quality
Estimation. In Proceedings of the 7th Workshop on Statistical Machine Translation, number 2011, pages 109–
113.

Sture Holm. 1979. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics,
6(2):pp. 65–70.

Ali Jalali, PD Ravikumar, S Sanghavi, and C Ruan. 2010. A Dirty Model for Multi-task Learning. In Advances in
Neural Information Processing Systems (NIPS) 23.

Jing Jiang and Chengxiang Zhai. 2007. Instance Weighting for Domain Adaptation in NLP. In Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics, number June, pages 264–271.

Jing Jiang. 2009. Multi-Task Transfer Learning for Weakly-Supervised Relation Extraction. In ACL ’09 Proceed-
ings of the Joint Conference of the 47th Annual Meeting of the ACL, number August, pages 1012–1020.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke
Cowan, Wade Shen, Christine Moran, Richard Zenz, Chris Dyer, Ondej Bojar, Alexandra Constantin, and Evan
Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In ACL 2007 Demo and Poster
Sessions, number June, pages 177–180.

Yashar Mehdad, Matteo Negri, and Marcello Federico. 2012. Match without a Referee : Evaluating MT Adequacy
without Reference Translations. In Proceedings of the 7th Workshop on Statistical Machine Translation, pages
171–180.

Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345–1359, October.
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