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Abstract

We address a challenging problem frequently faced by MT service providers: creating a domain-
specific system based on a purely source-monolingual sample of text from the domain. We solve
this problem by introducing methods for domain adaptation requiring no in-domain parallel data.
Our approach yields results comparable to state-of-the-art systems optimized on an in-domain
parallel set with a drop of as little as 0.5 BLEU points across 4 domains.

1 Introduction

We consider the problem of creating the best possible statistical machine translation (SMT) system for
a specific domain when no parallel sample or training data from such domain is available. We assume
that we have access to a collection of phrase tables (PT) and other models independently created from
now unavailable corpora, and we receive a monolingual source language sample from a text source we
would like to optimize for.

For a MT provider to deliver a SMT system tailored to a customer’s domain, a sample dataset is
requested. In most cases, the customer is able to provide an in-domain mono-lingual sample from his
operations. However, it is generally not feasible for the customer to provide the translations as well
because the customer has to hire professional translators to do that. In such a scenario, the translations has
to be generated by MT service provider itself by hiring human translators thus requiring an investment
upfront. The methods proposed in this paper aim to avoid that by building a good quality pilot SMT
system leveraging only sample mono-lingual source corpus, and previously trained library of models.
This in turn postpones the task of generating in-domain parallel data to a later date when there is a
commitment by the customer.

Unavailability of the raw parallel data could derive from a trading model where data owners share
intermediate-level resources like PTs, Reordering Models (RM) and Language Models (LM), but can
not, or do not want to, share the textual data such resources were derived from. This particular scenario
has been explained in (Cancedda, 2012).

This scenario is similar to the multi-model framework studied in (Sennrich et al., 2013), with the
additional challenge that no parallel development set is available. We build on the linear mixture model
combination of the cited work, extending it to our more challenging environment:

1. We propose a new measure derived from the popular BLEU score (Papineni et al., 2002) to assess
the fitness of a PT to cope with a given monolingual sample S. This measure is computed from
n-gram statistics that can be easily extracted from a PT.

2. We propose a new method for tuning the parameters of a log linear model that does not require
an in-domain parallel development set, and yet achieves results very close to traditional tuning on
parallel in-domain data.

We present our proposed metric BLEU-PT and computation of multi-model in Section 2. The pa-
rameter estimation of log-linear parameters of the SMT system is described in Section 3. We present
experiments and results in Sections 4 and 6 respectively.

∗Major part of the work was performed when the authors were in Xerox Research Center Europe.
This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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2 Building Multi-Model

Given a library of phrase tables, the goal of this step is to generate a domain adapted multi-model. The
challenging aspect in our scenario is the lack of in-domain parallel data, as well as absence of original
parallel corpora corresponding to the library of models. This rules out the possibility of using metrics
such as cross-entropy (Sennrich, 2012b) or LM-perplexity for computing the mixing coefficients. We
present our proposed metric in section 2.1, and interpolation of the phrase tables in section 2.2.

2.1 BLEU-PT
Given a source corpus s, and a set of phrase tables {pt1, pt2,. . . ,ptn}, the goal is to measure the similarity
of each of these tables with s. For measuring the similarity, we use BLEU-PT which is an adaptation of
the popular BLEU score for measuring the similarity between a corpus and a phrase table. The metric
BLEU-PT is measured as described in Equation 1.

BLEU-PT(PT, S) =

(
4∏

n=1

match(n|pt, s)
total(n|s)

)1/4

(1)

where match(n|pt, s) is the count of n-grams of order n in the source corpus s that exist in the source
side of the phrase table pt. total(n|s) is the number of n-grams of order n in the source corpus.

2.2 Interpolating Models
A state-of-the-art approach for building multi-models is through linear interpolation of component mod-
els, exemplified in Equation 2 for the case of the forward conditional phrase translation model.

hphr(s, t) = log
N∑

j=1

φjPphr,j(t|s) (2)

Various approaches have been suggested for computing the coefficients φ of the interpolated model, the
most recent being perplexity minimization described in (Sennrich, 2012b), where each translation model
feature is optimized separately on the parallel development set. Our work is set in a scenario where no
parallel development set is available for optimizing the interpolation coefficients. We have also observed
that perplexity minimization is computationally intensive, requires aligned parallel development set, and
the optimization time increases rapidly with increasing number of component models (for details, see
Section 4.2).

We propose a simple approach for computation of the mixing coefficients that relies on the similarity
of each model with respect to the test set. The mixing coefficients are obtained by normalizing similarity
values. The similarity between a model (phrase table) and a corpus is computed using the BLEU-PT
metric proposed in the previous section. Another similarity metric that can be used is LM Perplexity.
However, in the current scenario we do not have resources (training data) to build a source side LM for
computing the perplexity.

We empirically compare our method for computing mixing coefficients with the the perplexity min-
imization method. We also experiment with applying the mixing coefficients obtained by using our
method for mixing features of a reordering and language model.

3 Parameter Estimation

The overall quality of translation is strongly impacted by how optimized the weights of the log-linear
combination of various translation features are for a domain of interest. MERT (Och, 2003) and MIRA
(Watanabe et al., 2007) are popular solution to compute an optimal weight vector by minimizing the error
on a held-out parallel development set. BLEU and its approximations are commonly used error metrics.
In this paper we assume lack of a parallel development set, therefore the above methods cannot be used.

Pecina et. al. (2012) showed that the optimized log-linear weight vector 1 of a SMT system does not
depend as much on the actual domain of the development set (on which the system was optimized), as

1Not to be confused with the mixing coefficients in a linear combination of model components.
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on how “distant” the relevant domain is from the domain of the training corpus used to build the SMT
models. This is an important finding. It means that the weight vector can be modeled as a function of the
distance/similarity between the in-domain development set and the model built from the training set. In
this work, we learn this function from examples of previous parameter optimizations, using our BLEU-
PT as a similarity metric. Once we have retrieved the most relevant PTs (translation and reordering
models) from our library, and we have linearly interpolated them using normalized BLEU-PT, we use
the learned model to estimate the optimal value of the log-linear weights, instead of optimizing them.

In order to learn this mapping, we create a dataset of examples (pairs of the form <BLEU-PT, log-
linear weight vector>, where weight vectors are normalized to ensure comparability across models) by
performing repeated optimizations for out-domain models on a number of parallel development sets (see
section 4 for more details of this data) using a traditional optimization method (MIRA in this work).
Based on this dataset, the function of our interest can therefore be learnt using a supervised approach.
We explore two parametric methods and a non-parametric method. We present these in Section 3.1, and
3.2 respectively. For a mono-lingual source in a new domain, the BLEU-PT can be computed, and then
mapped to the appropriate weight vector using the methods presented below.

3.1 Parametric Methods

We considered two distinct parametric methods for estimating the mapping from model/corpus similarity
into weight vectors. The first one makes the assumption that parameters can be estimated independently
of one another, given the similarity, whereas the second tries to leverage known covariance between
distinct parameters in the vector.

3.1.1 Linear Regression
Motivated by initial experiments highlighting strong correlation between BLEU-PT and optimal feature
weights (see Section 5.1 below), we assumed here a simple linear relation of the form:

λ∗i = WiX + bi (3)

where λ∗i is the optimal log-linear weight for feature i, X is the feature vector (BLEU-PT vector), Wi

and bi are coefficients to be estimated. While a drastic assumption, this has the advantage of limiting
the risk of overfitting in a situation like ours where there is only relatively few datapoints to learn from.
We estimate ai and bi by simple least squares regression. Once these are available for all features, we
can predict the log linear weights of any model given its BLEU-PT similarity to a monolingual source
sample using Eq. 3.

3.1.2 Multi-Task learning
Optimal log-linear parameters might not be fully independent given BLEU-PT, especially since it is
known that model features can be highly correlated. To account for correlation between parameter
weights, we explore the use of multi-task lasso2 (Caruana, 1997) where several functions corresponding
to each parameter are learned jointly considering the correlation between their values observed in the
training data. Multi-task lasso consists of a least square loss model trained along with a regularizer and
the objective is to minimize the following:

arg min
w

1
2N
||X ·W − λ||22 + α||W ||21 where; ||W ||21 =

M∑
j

√∑
i

w2
ij (4)

Here, N is the number of training samples, X is the feature vector(BLEU-PT score vector) λ is the label
vector(log linear weights). ||W ||21 is the l21 regularizer (Yang et al., 2011). The problem of prediction
of log linear weights is reduced to prediction of i interlinked tasks where each task has M features3.
Coefficients are calculated using coordinate descent algorithm in Multi-Task lasso. Once the coefficients
are calculated we use Eq. 3 to predict the log linear weights.

2http://scikit-learn.org/
3In our case we only have 1 feature i.e. BLEU-PT score.
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3.2 Non Parametric: Nearest Neighbor
Finally, instead of building a parametric predictor for log linear weights, we experimented with a simple
nearest-neighbor approach:

λ∗i = λi(Mj∗) (5)

whereMj ranges over the linearly interpolated phrase tables, and λi(M) returns the stored optimal value
for the ith log-linear weight, and:

j∗ = arg min
j

min
s′

(|BLEU-PT(M, s)− BLEU-PT′(Mj , s
′)|) (6)

where s is the monolingual sample on which we want to calculate the BLEU-PT and s′ ranges over
the source sides of our available parallel development sets. In other words, a BLEU-PT of a model is
calculated on the source sample to be translated and the log-linear weight is chosen which corresponds
to BLEU-PT′, where BLEU-PT′ is a training data point closest to BLEU-PT. This approach is close to
the cross-domain tuning of Pecina et. al. (2012).

4 Experimental Program

We conducted a number of experiments for English-French language pair, comparing the methods pro-
posed in the previous sections among one another and against state-of-the-art baselines and oracles.

4.1 Datasets
In this section, we present the datasets (EN-FR) that we have used for our experiments and the training
data that was created for the purpose of supervised learning. We collected a set of 12 publicly available
corpora and 1 proprietary corpus, statistics of datasets are provided in Table 1.

Corpus Train Development Test
Commoncrawl 78M 12.4K 12.6K

ECB 4.7M 13.9K 14K
EMEA 13.8M 14K 15.7K

EUconst 133K 8K 8.4K
Europarl 52.8M 13.5K 13.5K

P1 5M 35K 14.5K
KDE4 1.5M 12.8K 5.8K

News Comm. 4M 12.7K 65K
OpenOffice 400K 5.4K 5.6K
OpenSubs 156M 16K 15.7K

PHP 314K 3.5K 4K
TED 2.65M 21K 14.6K
UN 1.92M 21K 21K

Table 1: Statistics of parallel sets (# of source tokens)
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Figure 1: BLEU-PT v/s Cross-Entropy

Commoncrawl (CC) (Smith et al., 2013) and News Commentary (Bojar et al., 2013) corpora were
provided in the 2013 shared translation task organized with workshop on machine translation. TED talks
data was released as a part of IWSLT evaluation task (Cettolo et al., 2012). ECB, EMEA, EUconst,
OpenOffice, OpenSubs 2011, PHP and UN corpora are provided as a part of OPUS parallel corpora
(Tiedemann, 2012). The parallel corpora from OPUS were randomly split into training, development
and testsets. Commoncrawl, News Commentary and TED datasets were used as they were provided in
the evaluation task.

Out of 13 different domain datasets we selected 4 datasets randomly: Commoncrawl, KDE4, TED and
UN (in bold in Table 1), to test our methods.

4.2 BLEU-PT v/s Cross-Entropy
We compared the overheads of calculating BLEU-PT and Cross-Entropy4. We are interested in estimat-
ing whether with increasing number of phrase tables the computation of both measures becomes slow or
memory intensive.

4We used tmcombine.py script that comes along with the moses package to calculate the mixing coefficients.
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Another advantage of using BLEU-PT apart from fast retrieval is that we can index the phrase tables
using wFSA based indexing (explanation of indexing the phrase tables is not in the scope of this paper)
and store the FSTs in binarised format on disk. When a source sample comes, we just load the indexed
binaries and calculate the BLEU-PT while this cannot be achieved when we want to calculate cross
entropy because we have to do one pass over all the phrase tables in question.

Experimental results depicted in Figure 1 shows that computation of BLEU-PT is fast (160 seconds)
while computation of cross-entropy is slow (42 minutes) when we combine 12 phrase tables with total
size of 4.2GB.

4.3 Training data for supervised learning and testing

As mentioned earlier, for estimating the parameters we require a training data containing the tuples of
<BLEU-PT, log-linear-weight>. We perform parameter estimation on four of our datasets: Common-
crawl, KDE4, TED and UN. So, for obtaining evaluation results on say, UN, the rest of the resources
are used for generating the training data. Our experimental setup can be explained well using the Venn
diagram shown in Figure 2.

We set one of four domains as the test domain (in this case, UN) whose parallel set is not available to us
and call it setup-UN. The training data tuples obtained from the rest of the 12 datasets are used to estimate
parameters for the UN domain. From these 12 datasets we perform a round-robin experiment where one
by one each dataset is considered as in-domain and the rest as out-domain. In-domain dataset provides the
development set and the rest 11 out-domain models are linearly combined to build translation models.
In figure 2, for example, the development set from the TED domain is taken as the development set
of the multi-model build using the rest (i.e. excluding TED and UN). This multi-model is built by a
weighted linear combination of the out-domain models (11 models). The parameters of this multi-model
are tuned on the in-domain development set using MIRA. Simultaneously, we also calculate the BLEU-
PT of the linear interpolated model on the source side of the in-domain development set (i.e. TED).
This provides us the tuples of BLEU-PT and the log linear weights, which is our training data. So, four
sets of experiments are conducted (one each for four datasets considered for testing), and for each set
of experiments, there are 12 training data points. The final evaluation is done by measuring the BLEU
score obtained on each test set using the predicted parameter estimates.

Reiterating, our optimizing method is fast, and hence, we are not not looking to learn the parameters
apriori for all the domains based on a source side of the development set. The goal is to do a fast
adaptation by predicting the parameters using statistical models for every new test in a particular domain
even in the absence of a parallel development set.

4.4 Prediction

For prediction of parameters for a new domain, the BLEU-PT of the sample source corpus (UN in our
example) is measured with the multi-model built on all the models (all the rest of 12 datasets including
the TED model) and then the supervised predictor is applied. In our experiments, we test both parametric
and non-parametric methods to estimate the parameters based on the training data obtained using the 12
domains.

TEST
In-domain

UN

...
...

EMEA

ECB
KDE

PHP

DEV
In-domain

TED

Figure 2: Cross domain tuning setup
Figure 3: Correlation of log linear weights with BLEU-PT
when indomain sets set to UN and TED
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Domain Linear Interpolation
System Train Dev Param. Est. TM(coeff.) RM(coeff.) LM(coeff.)

in-dom-train In In mira N.A N.A N.A
mira-bleupt-tm-rm Out In mira 3 3 7

mira-perp-tm-bleupt-rm Out In mira 3(Perp. Min) 3 7
mira-bleupt-tm-rm-perp-lm Out In mira 3 3 3(LM Perp. Min.)

mira-bleupt-all Out In mira 3 3 3

def-bleupt-all Out 7 def 3 3 3
gen-reg-bleupt-all Out 7 regression 3 3 3
gen-mtl-bleupt-all Out 7 multi-task 3 3 3
gen-nn-bleupt-all Out 7 Near.Neigh. 3 3 3

top5-reg-bleupt-all Out 7 regression 3 3 3
top5-mtl-bleupt-all Out 7 multi-task 3 3 3
top5-nn-bleupt-all Out 7 Near.Neigh. 3 3 3

Table 2: System Description: Each system’s training domain and development set domain along with the optimizer/predictor
is mentioned. def-bleupt-all uses default weights from Moses decoder. Near.Neigh. shows that we used Nearest Neighbor
predictor for optimizing weights. 7 represent log linear interpolation of models while 3 represents linear interpolation. The
mixing coefficients for linear interpolation are calculated by normalizing bleu-pt scores unless mentioned otherwise.

5 Experiments and Results

5.1 Correlation analysis
Before embarking in the actual regression task, we examined the correlation between the similarity values
(BLEU-PT) and the various weights in the training data. If there is good correlation between BLEU-PT
and a particular parameter, then the linear regressor is expected to fit well and then predict an accurate
parameter value for a new domain. For computing the correlation, we use Pearson correlation coefficient
(PCC). Figure 3 shows the PCC between the feature weights and the BLEU-PT scores. The tm’s are the
translation model features, and rm’s are the reordering model features.

We see that there is either a strong positive correlation or a strong negative correlation for most fea-
tures in both the experimental setups shown in the figure 3. This validates our hypothesis that optimal
parameters for a new test domain can indeed be estimated with good reliability. One can also observe
that the correlation level also varies based on the mixture of training models. For example, the correla-
tion is much higher in the training data that excluded UN (setup-UN) than the one that excluded TED
(setup-TED).

In figure 3, one can also see that tm0 (forward phrase conditional probability) and tm2 (backward
phrase conditional probability) which are shown in previous work to be the two most important features
amongst all SMT features (Lopez and Resnik, 2006) in terms of their impact on translation quality, have
a high correlation in setup-UN.

5.2 Systems
All SMT systems were built using the Moses toolkit (Koehn et al., 2007). To automatically align the
parallel corpora we used MGIZA (Gao and Vogel, 2008). Aligned training data in each domain was
then used to create the corresponding component translation models and lexical reordering models. We
created 5-gram language models for every domain using SRILM (Stolcke, 2002) with improved Kneser-
Ney smoothing (Chen and Goodman, 1999) on the target side of the training parallel corpora. Log linear
weights for the systems were optimized using MIRA (Watanabe et al., 2007; Hasler et al., 2011) which
is provided in the Moses toolkit. Performance of the systems are measured in terms of BLEU computed
using the MultEval script (mteval-v13.pl).

We built one in-dom-train system where only in-domain training data is taken into account. This
system shows the importance of in-domain training data in SMT (Haddow and Koehn, 2012). Three
oracle systems are trained on out-domain training corpus and tuned on in-domain development data (in
this case there are four domains we chose to test on: UN, TED, CommonCrawl and KDE4), thus 4
systems for each of the in-domain test sets.

We build another set of SMT systems in which language models are combined by linear interpolation5.

5Linear interpolation of 12 LMs result in one single large LM, thus, one weight. So, a total of 14 weights have to be
optimized or predicted
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The systems using linear interpolated LM (mixing coefficients are normalized BLEU-PT scores) are def-
bleupt-all, mira-bleupt-all, gen-reg-bleupt-all, gen-mtl-bleupt-all and gen-nn-bleupt-all. We compare
mira-bleupt-all with mira-bleupt-tm-rm-perp-lm where mixing coefficients for LM interpolation are cal-
culated by standard LM perplexity minimization method over target side of development set.

As mentioned earlier, ideally only a subset of all the models closer to the source sample should be
taken into account for quick adaptation, so we select the top five domains related to the source sample
and interpolate the respective models and address them as top5-* systems. Adding more domains would
unnecesary increase the size of the model and add more noise. Table 2 shows the configuration of
different systems. In the next section we compare the performances of these systems and report the
findings.

6 Results and Discussion

Table 3 presents results of the systems that use an in-domain parallel data. As expected, when an in-
domain corpus is used both for training as well as for optimizing the log-linear parameters, the pefor-
mance is much higher than those systems that do not use in-domain parallel corpus for training (Koehn
and Schroeder, 2007). We also observe that the use of normalized BLEU-PT for computing mixing
coefficients gives comparable performance to using Cross-Entropy. The primary advantage in using
BLEU-PT is that it can be compute much faster than Cross-Entropy (as shown in Figure 1). Evidently,
normalized BLEU-PT scores as mixing coefficients performs at par with mixing coefficients retrieved by
standard perplexity minimization method (Bertoldi and Federico, 2009). One can also use BLEU-PT for
LM interpolation in cases where target side in-domain text is not available.

System UN TED CC KDE
in-dom-train 67.87 29.98 26.62 35.82

mira-bleupt-tm-rm 44.14 31.20 17.43 24.25
mira-perp-tm-bleupt-rm 43.56 31.36 17.54 24.72

mira-bleupt-tm-rm-perp-lm 43.96 31.85 18.45 23.39
mira-bleupt-all 43.66 32.04 18.44 23.09

Table 3: Comparison of In-Domain system versus the estab-
lished Oracles in different setups.

System UN TED CC KDE
gen-reg-bleupt-all 43.27 32.18 17.95 21.05
gen-mtl-bleupt-all 43.35 32.61 18.26 20.67
gen-nn-bleupt-all 42.73 31.04 18.24 21.85

Table 4: Performance of generic systems (gen-*) in all se-
tups.

Table 4 illustrates the impact of phrase table retrieval on the performance of multi-model. All the
systems presented in this table use BLEU-PT for computing mixing coefficients, while the weights
are computed using the three techniques that we explored in this paper. We see that in case of re-
gression, the phrase table retrieval also results in a better MT performance. In the other two cases,
the results are comparable. It shows that retrieval helps in building smaller sized multi-models while
being more accurate on an average. Phrase table retrieval, thus, becomes particularly useful when a
multi-model needs to be built from a library of dozens of pre-trained phrase tables of various domains.
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Figure 4: BLEU scores when top k models were
used to evaluate commoncrawl test set where
k ∈ 1..12.

System UN TED CC KDE
def-bleupt-all 42.03 30.82 17.97 19.66

mira-bleupt-all 43.66 32.04 18.44 23.09
top5-reg-bleupt-all 43.39N 32.31N 18.10 21.54N

top5-mtl-bleupt-all 43.56N 32.60N 18.14 20.91N

top5-nn-bleupt-all 42.96N 30.89M 17.79 22.24N

Table 5: Comparing the baseline system (def-bleupt-all)
and Oracle (mira-bleupt-all) with domain specific multi-model
systems trained on top5 domains. Nand Mdenotes significantly
better results in comparison with def-bleupt-all system with
p-value < 0.0001 and < 0.05 respectively.

Table 5 compares our approach of computing log-linear weights (in the absence of in-domain develop-

ment set) to the state-of-art weight optimization technique MIRA (which requires an in-domain devel-
opment set). As a baseline, we set default weights to all the parameters, which was shown to a strong
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baseline in (Pecina et al., 2012). We see that the methods proposed by us perform significantly bet-
ter than the default weights baseline (improvement of more than 1.5 BLEU score on an average across 4
domains). Among the three approaches for computing weights, the method that uses multi-task lasso per-
forms best (except in setup-KDE where the non-parametric method performs best), along the expected
lines as multi-task lasso considers the correlation between various features. In comparison to MIRA, our
methods result in an average drop of as little as 0.5 BLEU points across 4 domains (see Table 5).

Figure 4 shows BLEU score curve when we vary the k in top-k systems. BLEU score curve is almost
tangential zero when k is between 5 and 6 which essentially means that selection of k = 5 is a good
choice. For CommonCrawl test set, the top five domains used were Europarl, OpenSubs, NewsCom-
mentary, TED and ECB. This is a significant result which indicates that one can build a good system for
a domain even in the absence of the parallel data in the domain of interest.

7 Related Work

Domain adaptation in statistical machine translation has been widely studied and leveraged through
adding more training data (Koehn and Knight, 2001), filtering of out of domain training data (Axelrod
et al., 2011; Koehn and Haddow, 2012), fillup technique (Bisazza et al., 2011), language model adap-
tation by perplexity minimization over in-domain data (Bertoldi and Federico, 2009) and various other
approaches. However, all the above adaptation approaches require either parallel in-domain corpus or
monolingual in-domain target side corpus, thus, not applicable in our scenario.

In this paper we studied mixture modelling of heterogeneous translation models which was first pro-
posed in Foster et. al. (2007). They showed various ways of computing mixing coefficients for linear
interpolation using several distance based metrics borrowed from information theory. However, to cal-
culate any such metrics it was required that one has an access to the source/target training corpus and
source/target development corpus. Other noteable works in mixture modelling in SMT are (Civera and
Juan, 2007; Razmara et al., 2012; Duan et al., 2010).

More recently, Sennrich (2012b) designed an approach to calculate mixing coefficients by minimizing
the perplexity of translation models over an aligned development set for mixture modelling via linear
interpolation or by weighting the corpora. Sennrich et. al. (2012a) clustered of a large heterogeneous
development corpus and tuned a translation system on different clusters. In the decoding phase each
sentence was assigned to a cluster and the translation system tuned on that cluster was used to translate
that sentence.

(Banerjee et al., 2010) build several domain specific translation systems, and trained a classifier to
assign each incoming sentence to a domain and use the domain specific system to translate the corre-
sponding sentence. They assume that each sentence in test set belongs to one of the already existing
domains which means it would fail in the case where the sentence doesn’t belong to any of the existing
domains. In our case we do not make any such assumptions.

Academically, above approaches are well suited for solving the problem of domain adaptation, but
during the deployment of SMT systems in industrial scenario where the client is unable to deliver the
parallel in-domain data these approaches fail to provide a quick solution.

8 Conclusion

We present an approach to multi-model domain adaptation in a particularly challenging setting where
there is no parallel in-domain data. Parameter estimation without in-domain development set is a problem
that, to the best of our knowledge, has not been addressed before. We designed a method for tuning model
parameters without parallel development set and validated it through an experimental program for which
we compared performances against an array of Oracles and Baselines. The effectiveness of the proposed
method empirically supports the findings of (Pecina et al., 2012), who discovered that the log linear
weights largely depend on the distance of training domain from the domain on which the models are
being optimized on. As a side result, we designed in the process a novel similarity metric between a
phrase table and a source sample and implemented it effectively using wFSAs. We empirically showed
the excellent computation speed of BLEU-PT scores as compared to standard Cross-Entropy measure
using standard toolkits.
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