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Abstract

We manually created a semantic taxonomy called Phased Predicate Template Taxonomy (PPTT)
that covers 12,023 predicate templates (i.e., predicates with one argument slot like “rescue X”)
and derived from it various semantic relations between these templates on a million-instance
scale (70%-80% precision level). The derived relations include entailment (e.g., rescue X⊃X is
alive), happens-before (e.g., buy X⇒drink X), and a novel relation type anomalous obstruction
(e.g., X is sold out;cannot buy X). Such derivation became possible thanks to PPTT’s design
and the use of statistical methods.

1 Introduction

Databases of various semantic relations between natural language expressions are indispensable knowl-
edge for many NLP applications. For instance, entailment relations are crucial in information extraction
and QA (Dagan et al., 2009; Weisman et al., 2012; Berant et al., 2012; Turney and Mohammad, 2014).
Temporal relations such as happens-before (Chklovski and Pantel, 2004b; Regneri et al., 2010) are im-
portant for enhancing deep semantic processing. A problem, however, is that it is difficult to acquire
those relations with a broad coverage. Although many sophisticated machine learning techniques have
been applied to various kinds of corpora for this task (Szpektor et al., 2007; Chambers and Jurafsky,
2008; Hashimoto et al., 2009; Chambers and Jurafsky, 2009; Hashimoto et al., 2012; Talukdar et al.,
2012; Kloetzer et al., 2013), no satisfactory coverage has been achieved, probably due to data sparseness
in the input data. In this work we take a completely different approach: we manually construct a seman-
tic lexicon called Phased Predicate Template Taxonomy (PPTT), and derive various types of semantic
relations on a large-scale by using it. Our target language is Japanese, but examples are given in English
for simplicity throughout this paper.

PPTT is a taxonomy of predicate templates (predicates with one argument slot like rescue X, “Tem-
plate” hereafter) that classifies templates according to phases of story concerning an entity denoted by
X. In the story, or the “life” of the entity X, X can be anticipated, created, then execute its function and
finally it may collapse and become deficient. Anticipation, creation, execution, collapse, deficiency of X
can be seen as such phases of story concerning X, and PPTT classifies templates into 41 semantic classes
each of which corresponds to a phase. In other words, PPTT provides a way to describe the stories of var-
ious entities that constitute this world, and we believe that PPTT (partly) reflects how we understand the
world and its entities. Accordingly, PPTT can also provide a way to derive various semantic knowledge
about this world such as the happens-before relation between events involving an entity, e.g., since the
creation phase usually occurs before the execution phase, invent X (creation phase) is likely to happen-
before use X (execution phase). In addition, entailment relations can be derived: since the creation phase
of an object X must have occurred if X is in its execution phase, it implies that use X is likely to entail
invent X.

In addition, there are ups and downs in stories; some entities suffer setbacks in their stories. PPTT de-
scribes such “ups and downs” by means of a recently proposed semantic polarity, excitation (Hashimoto
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et al., 2012). Excitation classifies templates into excitatory, inhibitory, and neutral; an excitatory tem-
plate like install X and buy X indicates that the main function, effect, purpose or role of the entity referred
to by the X of the template is activated, enhanced, or prepared,1 while an inhibitory template like unin-
stall X and X is canceled roughly indicates that it is deactivated or suppressed. Neutral templates are
neither excitatory nor inhibitory (e.g., consider X). Roughly speaking, an excitatory template expresses
the events that contribute to turn on the function of X, while an inhibitory template expresses the events
that contribute to turn off or not to turn on the function of X. Then, in PPTT, excitatory and inhibitory
respectively correspond to “ups” and “downs” in the story of X. The phases in PPTT are marked accord-
ing to these ups and downs. Accordingly, PPTT can derive many antonymous contradiction pairs like
install X⇔uninstall X, as Hashimoto et al. did, though we omit the detail for space limitation. Moreover,
PPTT can derive a huge volume of anomalous obstruction, a contradiction-like novel semantic relation
that we propose in this paper, like X is canceled;(cannot) buy X and X is sold out;(cannot) buy X,
which indicate that if X is canceled or sold out, you cannot buy X. Anomalous obstruction should be
used for Why-type QA (Oh et al., 2013), as well as a novel system that warns a user who wants to buy
a commercial product that the product is started to be sold out or canceled in various e-commerce sites
without any application-specific coding.

As suggested, a story has a temporal order between its phases, which we call the canonical temporal
order. In addition, some phases in a story would enable or necessitate another phase in the same story to
occur. In PPTT, these relations are embodied in various temporal-semantic links between phases. Note
that each link between two phases does not guarantee that every possible pair of templates taken from
the two phases has such semantic relations; it just indicates that there exists such tendencies. Despite the
absence of the guarantee, PPTT’s links enable a million-scale derivation of semantic relations with the
help of distributional similarity. In existing resources such as WordNet (Fellbaum, 1998), the links are
assumed to be 100% correct, but it would be hard to have such absolutely correct links in a million-scale.
Hence, we believe that our approximate links are more useful for a large-scale relation derivation.

Note that the goal of our PPTT project is to derive a wide range of semantic relations on a large scale,
rather than to complete a comprehensive template taxonomy. As such, PPTT lacks some templates as
described in later sections. Nevertheless, we believe that our design brings much more good than harm,
since we could generate various semantic relations on a million scale thanks to PPTT. Our experimental
results show that we can derive 4.4 million happens-before relation instances with 79.5% precision,
0.5 million entailment relation instances with 70.0% precision, and one million anomalous obstruction
relation instances with 73.5% precision. Constructing the PPTT taxonomy requires a manual labor cost,
which amounted to three man-months in our case; however, we believe that this cost is lower than the
cost for developing highly-precise automatic acquisition methods for all of happens-before, entailment,
contradiction, and anomalous obstruction relations.

We plan to release PPTT and the derived relation instances after the manual annotation of the derived
instances to the NLP community.

2 Related Works

PPTT might resemble other semantic lexicons created in the long history of NLP (Levin, 1993; Kipper
et al., 2006; Fellbaum, 1998; Bond et al., 2009; Fillmore, 1976; Baker et al., 1998; Halliday, 1985;
Pustejovsky et al., 2003; Puscasu and Mititelu, 2008; Bejar et al., 1991; Jurgens et al., 2012). PPTT
is different in that it primarily aims at deriving various types of semantic relations on a large scale ex-
ploiting the notion of the phase of story, rather than being a comprehensive taxonomy like those existing
semantic lexicons. As a result, PPTT can derive more varieties of semantic relations between templates
than any one of those existing lexicons. From WordNet (Fellbaum, 1998; Bond et al., 2009), we can de-
rive entailment and contradiction relations using synsets and synset-links that represent relations such as
‘troponym’, ‘antonym’ and ‘entailment’. However, happens-before and anomalous obstruction relations

1The above definition is slightly different from the original one in Hashimoto et al. (2012). We inserted the verb “prepared”
into the original definition. This clarifies that various preparation processes for X, such as buy X, can be regarded as excitatory
templates. We also assume that such templates as X exists and have X, which mean little more than just existence, are regarded
as excitatory templates in PPTT based on the assumption that existence can be regarded as preparation for the function of X.
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cannot be derived from it, since there is no information on temporal ordering except that on causality.
From VerbNet (Levin, 1993; Kipper et al., 2006), the hyponymy/synonymy type of entailment relations
may be derived using templates in the same verb classes constructed based on shared syntactic behavior,
possibly with the help of statistical methods. However, the other types of relations that can be derived
from PPTT cannot be derived from VerbNet, since there is no link representing relationships between the
verb classes. FrameNet (Fillmore, 1976; Baker et al., 1998) was used to derive hyponymy/synonymy
types of entailment (Coyne and Rambow, 2009; Aharon et al., 2010) using information such as a Frame-
to-frame relation ‘Inheritance’ (is-a relation). In addition, happens-before relations can be derived using
‘Precedes’ (Later-Earlier relations). However, since it does not contain semantic constraints like en-
ablement and necessity that PPTT contains, it is not trivial to derive presupposition type of entailment
or anomalous obstruction instances from it. TimeML (Pustejovsky et al., 2003; Puscasu and Mititelu,
2008) contains various temporal information and can be used to derive context-dependent happens-before
relations such as the relation between “leaves” and “will not hear” in the sentence “If Graham leaves to-
day, he will not hear Sabine” through TLINK (Pustejovsky et al., 2003) annotated manually; thus, it is
difficult to derive context-independent relations from it, while they can be derived from PPTT. Besides,
since it covers only temporal information, it is difficult to derive other types of relations from it. From
Bejar et al.’s semantic relation taxonomy of lexical pairs (Bejar et al., 1991; Jurgens et al., 2012),
using semantic relation categories such as “act: act attribute” (e.g., creep:slow), lexical entailment rela-
tions were extracted (Turney and Mohammad, 2014). However, it is not trivial to derive happens-before
or anomalous obstruction relations from it since it does not contain information on temporal sequences
between verbs.

Furthermore, our work differs from automatic methods for extracting temporal or causal relations
(Szpektor et al., 2007; Chambers and Jurafsky, 2008; Chambers and Jurafsky, 2009; Talukdar et al.,
2012; Hashimoto et al., 2012; Hashimoto et al., 2014) in that our method does not require that target
pairs co-occur in a document, unlike the previous methods. Hence, our method is likely to be immune
to data sparseness. We could actually derive a wide range of relation instances that were rarely written
in documents because they were too commonsensical (e.g., X is constructed happens-before sew (some-
thing) at X). Needless to say, such commonsensical knowledge is often needed to develop intelligent
systems.

3 PPTT Design

In PPTT, templates are organized hierarchically into three levels. In each level, there are classes that
correspond to phases of stories, which we call Level-0 (L0), Level-1 (L1), and Level-2 (L2) classes.
Each template belongs to only one class at each level. In the following, we describe each level.

3.1 L0-Classes and L0-Links
First we divided the entire story concerning an entity X into five phases: non-existence, existence, func-
tioning, non-existence to existence transition and existence to non-existence transition. Then we created
the five L0-classes listed below, each of which corresponds to one of these five phases.

Non-existence Class The class of templates that do not entail the existence of X, e.g., plan
X.2

Existence Class The class of templates that entail X’s existence but does not imply the execu-
tion of its main function or the achievement of its objectives, e.g., buy X, X exists.

Functioning Class The class of templates that imply the execution of X’s main function or
the achievement of its objectives, e.g., use X, eat X.

Non-existence to Existence Transition Class (NET Class) The class of templates that ex-
press the transition from a situation in which X does not exist to a situation in which it
exists, e.g., manufacture X.

2One might think the definition of the Non-existence Class should be “the templates that DO entail X’s NON-EXISTENCE”.
We did not use such a definition because it would overlook many templates that are consistent with X’s NON-EXISTENCE but
DO NOT entail X’s NON-EXISTENCE, like order X.
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Existence to Non-existence Transition Class (ENT Class) The class of templates that ex-
press the transition from a situation in which X exists to a situation in which it does not
exist, e.g., dismantle X.
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Figure 1: L0-links among L0-classes.

As mentioned in the introduction, we assume
a canonical temporal order among L0-classes.
For instance, templates in the NET class (e.g.,
manufacture X) should refer to events that usu-
ally happen before those events referred to by
templates in the Existence class (e.g., buy X),
Functioning class (e.g., use X) and ENT class
(e.g., dismantle X). We enumerated such tem-
poral restrictions, each of which is represented
by a link in Figure 1, which we call L0-links
and used them for deriving relations. Note that
we did not set any L0-link between the Exis-
tence class and the Functioning class because
the events described by them may happen in various orders or have temporal overlap. For example, X
exists should have temporal overlap with use X.

Of course, such metaphysical notions as the canonical temporal order and the phases must have many
complications and exceptions. First, many templates that have the neutral excitation polarity (Hashimoto
et al., 2012) did not seem to follow the canonical temporal order among L0-classes. For instance, since
the neutral template think about X does not entail the existence of X, it belongs to the Non-existence
class but one can consider X while X exists or while it is functioning or even after it is collapsed and
violate canonical temporal ordering. For this reason, we excluded neutral templates from PPTT and will
deal with them in a different framework as a future work. In addition, although we did not assume a
temporal order between the Existence class and the Functioning class, some templates in these classes
have a happens-before relation as special cases (e.g., buy X in the Existence class happens before eat
X in the Functioning class). The proposed L0-links also cause problems. For instance, order X (Non-
Existence class) may not always happen before create X (NET class) even though the L0-links indicate
a happens-before relation between their classes. We dealt as far as possible with such cases in level 2
with L2-classes, which are finer than L0-classes. Nonetheless, we stress that the overall plausibility of
the canonical temporal order among L0-classes was experimentally confirmed through the derivation of
happens-before relations only using L0-links. Note that the design of the L0-classes was inspired by the
Generative Lexicon (Pustejovsky, 1998) and Aristotle’s Entelecheia (Aristotle, 1987).

3.2 L1-Classes

Excitation
L0-class Excitatory Inhibitory

POTENTIAL class FORECLOSING class
Non-existence class e.g., plan X e.g., prevent X

ENABLING class INCOMMODE class
Existence class e.g., buy X e.g., weaken X

ACTUALIZING class DISORDERING class
Functioning class e.g., X functions e.g., X loses

GENERATING class
NET class e.g., X is born N/A

CORRUPTING class
ENT class N/A e.g., destroy X

Table 1: L1-classes.

Next, we divided some L0-classes into
L1-classes using the excitation polar-
ity (Hashimoto et al., 2012) to intro-
duce “ups and downs” to PPTT, which
enables to capture semantic inconsis-
tencies between templates (e.g., in-
stall X⇔uninstall X) and negative in-
teraction between the events referred
to by the templates in PPTT (e.g., X
is canceled;(cannot) hold X). Excita-
tion was originally proposed for recog-
nizing contradictions and causal rela-
tions between templates and then was
successfully applied to other deep se-
mantic processing (Oh et al., 2013; Varga et al., 2013; Kloetzer et al., 2013; Hashimoto et al., 2014).
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As shown in Table 1, we divided each of three L0-classes (Non-existence class, Existence class and
Functioning class) into two L1-classes, each of which corresponds to excitatory and inhibitory. Since
the transition to an existence situation can be interpreted as an enhancement of an entity’s function, we
assumed that all the templates in the NET classes are excitatory because they express a transition of
entity X from a non-existence situation to an existence situation. Similarly, we assume all the templates
from the ENT class are inhibitory. Also, L1-classes do not have specific links between them beside the
L0-links from their parent classes.

3.3 L2-Classes and L2-Links
Finally, we divided L1-classes into 41 L2-classes. Specifically, we first roughly grouped together seman-
tically similar templates from the same L1-class and identified the common semantic properties among
them. Note that in the rough grouping, we classified templates so that the resulting groups fit into fine-
grained phases in the story concerning X.

After this initial grouping, we classified all the templates into the L2-classes that are listed in Table
3 alongside the classification criteria and the number of templates in each class. As the classification
criteria, we used the identified common semantic properties among members of each class. Note that
some L2-classes can be regarded as a subset of another L2-class. For instance, the PROHIBIT L2-class
can be seen as a subset of the PREVENTION L2-class. When a template meets the classification criteria
of both a subset class and its superset class, we classified it into the subset class.

We also made links called L2-links between the L2-classes. The motivation behind this is to capture
finer temporal-semantic constraints that could not be specified at Level-0 and Level-1 as well as to
capture the temporal-semantic constraints inside a single L0 or L1-class. For example, the temporal
order between buy X and eat X is encoded in a L2-link between the ACQUISITION and EXECUTION L2-
classes, while there is no L0-link between the Existence L0-class (class of buy X) and the Functioning
L0-class (class of eat X). This exemplifies that the L2- and L0-links complement each other.

Each L2-link has one of the six types of temporal-semantic links that are summarized in Table 2 with
the number of links of each type. The link types were designed to capture how the events referred to by
the templates in a class affect the occurrence or non-occurrence of the events referred to by the templates
in a class in the past, present, or future. C1 and C2 being two L2-classes, C1’s effect on the occurrence or
non-occurrence of C2 is represented by Positive (+) and Negative (−) links, respectively, while C1’s effect
on the past, present, or future phase of X expressed by C2 is represented by Past, Present, and Future
links, respectively. For instance, the Past+ link from the ABANDONMENT class to the ACQUISITION

class indicates that a template from the ACQUISITION class (e.g., obtain X) must occur before a template
from the ABANDONMENT class (e.g., get rid of X), and the Future− link from the PROHIBIT class to
the EXECUTION class indicates that templates from the PROHIBIT class (e.g., ban X) disable templates
from the EXECUTION class (e.g., utilize X). Notice that L2-links represent such semantic constraints as
enablement and necessity in addition to temporal order, and they are useful for deriving various kinds of
semantic relations including entailment and anomalous obstruction, as shown in a later section. The first
author of this paper hand-labeled the links between every combination of L2-class pairs by considering
the name of the classes and a few example templates in each.

Positive Negative
Past If C1 occurred, C2 must have occurred.

e.g.,FORGETTING
Past+→ RECOGNITION; X is forgotten Past+→ X is

recognized (55 links)

If C1 occurred, C2 COULD NOT have occurred.

e.g.,CREATION
Past−→ PREVENTION; X is generated Past−→ X

is prevented (438 links)
Present While C1 is taking place, C2 must be taking place.

e.g.,INITIATION
Present+→ BEING; X is started Present+→ X

exists (73 links)

While C1 is taking place, C2 CANNOT take place.

e.g.,ENHANCEMENT
Present−→ DEGRADATION; X is enhanced

Present−→ X is deteriorated (496 links)

Future C1 enables C2 to occur. e.g.,PREPARATION
Future+→ EXECUTION;

X is customized Future+→ X is executed (90 links)

C1 DISABLEs C2 to occur. e.g.,

DEFICIENCY
Future−→ PROVISION; X does not exist Future−→

X is provided (210 links)

Table 2: Types and numbers of L2-links in PPTT. Link direction is C1 → C2.
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Non-existence L0-class: Potential L1-class (578) / Foreclosing L1-class (178)
DESIRE entails that X is desired but unlike PLANNING or DEMAND, it does not entail that X is planned or requested, e.g.,

desire X, want X (48).
PLANNING entails that X is planned but does not entail that X is requested. Unlike DEMAND, it does not assume that a person

other than the Planner will carry out X, e.g., plan X, conspire X (72).
DEMAND entails that X is requested. Unlike PLANNING, it assumes that a person other than the Demander will carry out X,

e.g., order X (252).
APPROVAL entails that X is approved or permitted and that there was a plan or a demand before approving, e.g., permit X, accept

X (80).
FEAR entails that X is expected and that X is a source of anxiety or fear, e.g., fear X, worry about X (13).
ANTICIPATION entails that X is expected but unlike FEAR, does not entail that X is a source of anxiety or fear, e.g., forecast X, predict

X (24).
SEARCH entails that X is searched for but unlike DESIRE or DEMAND, does not entail that X is desired or requested, e.g.,

search for X (89).
PREVENTION entails that X is prevented. Unlike CANCELATION, it does not entail that there was a plan or a demand before

preventing, e.g., preclude X (54).
CANCELATION entails that X is canceled and that there was a plan or demand before canceling, e.g., cancel X, give up X (34).
PROHIBIT entails that X is prohibited. X’s right or ability to be generated or used is taken away. e.g., ban X, forbid X (39).
POSTPONE entails that X is postponed, e.g., postpone X, defer X (15).
DEFICIENCY entails that X does not exist but does not entail that it is prevented, canceled, prohibited, or postponed, as in other

L2-classes of Foreclosing L1-class. e.g., lack X, X is absent (36).
NET L0-class: Generating L1-class (596)

SYMBOLIZATION entails that X transits from non-existence to existence as a kind of (semiotic) representation, e.g., write X, compose
(music) X (13).

CREATION entails that X transits from non-existence to existence. Unlike SYMBOLIZATION, X is not limited to a semiotic
representation, and unlike TRANSFORMATION, it focuses less on transformation from another entity. generate X,
cause X (509).

TRANSFORMATION entails that X transits from non-existence to existence as a result of transformation. Unlike CREATION, it focuses on
the transformation from another entity, e.g., turn into X (74).

ENT L0-class: Corrupting L1-class (622)
COLLAPSE entails that X transits from existence to non-existence by dying, being eliminated, or being destroyed. Unlike CON-

VERSION , it focuses less on transformation, e.g., destroy X, kill X (588).
CONVERSION entails that X transits from existence to non-existence by transforming X into an another entity, e.g., turned from X,

changed from X (34).
Existence L0-class: Enabling L1-class (3,536) / Incommode L1-class (1,355)

RECOGNITION entails that X is recognized or sensed, e.g., find X, feel X (308).
SELECTION entails that X is selected, e.g., appoint X, choose X (139).
ENCOUNTER entails that X emerges as a result of transportation, e.g., send X, X arrives (407).
ACQUISITION entails that X is obtained and possessed, e.g., buy X, catch X (482).
PROVISION entails that X is handed to be possessed, e.g., sell X, render X (422).
ENHANCEMENT entails that X is extended, improved, or supported, e.g., increase X, help X (880).
PREPARATION entails that X is arranged, connected, or qualified in preparation to execute its function, e.g., cook X, install X (822).
BEING entails that X is existing or living but does not entail that X is recognized, selected, encountered, acquired, enhanced,

or prepared, as in other L2-classes of the Enabling L1-class, e.g., X exists, X lives (76).
UNRECOGNIZING entails that X is not recognized or sensed but unlike FORGETTING, does not entail that X was previously recognized,

e.g., overlook X (8).
FORGETTING entails that X is forgotten and that X was once recognized, e.g., forget X, lose memory of X (8).
UNSELECTING entails that X is not selected, e.g., alternate X, reject X (46).
SEPARATION entails that X is left or separated as a result of transportation, e.g., X leaves, send X away (114).
ABANDONMENT entails that X is not possessed as a result of being thrown away, e.g., throw X away, renounce X (58).
DEPRIVATION entails that X was taken away without the permission of a possessor, e.g., steal X, take X away (102).
DEGRADATION entails that X is reduced, deteriorated, or interrupted, e.g., X is weakened, attack X (908).
UNPREPARED entails that X is unprepared, disconnected, or unqualified, e.g., X is uninstalled, X is disconnected (111).

Functioning L0-class: Actualizing L1-class (4,460) / Disordering L1-class (698)
EXECUTION entails that the function of X is executed but unlike WORKING, does not entail that X successfully satisfies its function,

e.g., ignite X (966).
WORKING entails that the function of X is carried out and that X successfully satisfies its function, e.g., X functions, cleaned by

X (3,106).
INITIATION entails that X is started or continued, e.g., start X, open X (185).
SUCCESS entails that X accomplished its goal and the result of the execution of its function is evaluated positively, e.g., accom-

plish X, X wins (203).
SUSPENSION entails that the function of X is suspended but unlike FINISHING, does not entail that its function is terminated, e.g.,

suspend X (133).
DYSFUNCTION entails that the function of X is executed but X is performing poorly, e.g., X is sluggish, bored by X (196).
FINISHING entails that X is terminated, e.g., end X, finish X. (110).
FAILURE entails that X fails to accomplish its goal and the result of the execution of its function is evaluated negatively, e.g., X

is defeated (259).

Table 3: PPTT classes. The number in parentheses indicates the number of templates in PPTT.
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Note that the existence of an L2-link does not guarantee that the semantic properties specified by it
hold for all the possible template pairs taken from the class pair it connects. The cost of hand-labelling
the links with such guarantees is prohibitively high because we would have to check all of the template
combinations. We empirically evaluated the validity of the links in our experiments below although this
is not a direct evaluation since the relations we derived are different from the ones given to the links.

4 Construction of PPTT and Relation Derivation

Using the automatic acquisition method proposed by Hashimoto et al. (2012), we collected 10,825 can-
didates of excitatory/inhibitory templates from a 600-million-page web corpus (hereafter, WCorpus).
Hashimoto et al.’s method constructs a network of templates based on their co-occurrence in sentences
with a small number of seed templates of which excitation polarity are assigned manually, and infers the
polarity of all the templates in the network by a constraint solver based on the spin model (Takamura et
al., 2005). Then, we added the 20,000 most frequent templates in the corpus that could not be extracted
automatically for a total of 30,825 templates.

Three human annotators (not the authors) judged the polarity of the templates, and we included the
excitatory and the inhibitory templates but excluded the neutral templates in PPTT due to the reason
discussed in Section 3.1. We also excluded templates whose variable X is the subject of a transitive verb.
This is because the subject position is often occupied by living things, and since the functions/objectives
of such subjects seem difficult to identify, it is often difficult to judge whether such templates should be
classified into the Functioning class or another. After applying these two restrictions, the first author
classified the remaining 12,023 templates in PPTT.

In this work, we derived happens-before, entailment and anomalous obstruction relations among tem-
plates from PPTT. The target data is the set of all the template pairs such that a noun exists with which
both templates of the pair co-occur at least 100 times in WCorpus. We denote this set of the template
pairs by TP100, and all the relation derivations pick up template pairs as relation instances from it. This
is because in our preliminary experiments, we found that the relation instance candidates taken from
outside of TP100 had much lower precision. The relation derivation itself is quite simple and consists
of the following two steps.

Step 1 Select L0-links or types of L2-links that are expected to represent a target semantic
relation (e.g., Present+ links are expected to represent entailment, since they represent
the relations between classes where “While C1 is taking place, C2 must be taking place”.)
and extract all the class pairs connected by the selected links (e.g., INITIATION L2-class
Present+→ BEING L2-class). Enumerate all the template pairs from the intersection between

TP100 and the extracted class pairs (e.g., X is started Present+→ X exists).
Step 2 If necessary, rank the relation instance candidates that are extracted in Step1 by distri-

butional similarity scores between the templates that compose the candidates, computed
with WCorpus.

5 Experiments

This section reports our experiments on semantic relation derivation. Derived relation instances were
marked by three human annotators (not the authors) who voted to break ties. Unless stated otherwise,
we asked them to mark a template pair as negative if they found any noun that can be placed in both
templates’ argument slots and makes the template pair a negative sample for the target relation, and
positive otherwise.

5.1 Happens-Before Relation
Following Regneri et al. (2010), we assumed template1 (T1) has a happens-before relation with template2

(T2) iff one event expressed by T1 normally happens before another expressed by T2, provided that both
events occur. Below are our four methods to derive happens-before relation instances, each of which
uses different links. Note that we did not use distributional similarity in this experiment.
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H1 uses the 55 pairs of L2-classes connected by L2-link Past+, meaning that a template in a
class must occur before another.

H2 uses the 90 pairs of L2-classes connected by L2-link Future+, i.e., a template in a class
often enables another to occur.

H3 uses the 474 pairs of L2-classes connected by one of the seven L0-links in Figure 1, i.e.,
the canonical temporal order links.

All is the union of H1-H3 results.

We prepared two baselines; HB-Ptn is a pattern-based method based on Chklovski and Pantel (2004a).
It extracts template pairs in TP100 that were connected in WCorpus by one of manually collected 73
conjunctives expressing temporal order, such as after and before, and which either shared the same
argument or the second template was filled by the pronouns it, this, or that. Random is a random
sampling from TP100.

Three annotators annotated 200 random samples from each method’s output. Fleiss’ kappa was .56
(moderate agreement). The results of their majority vote are summarized in Table 4. The recall was
estimated against the number of positive samples in TP100 based on the precision of Random. The
precision of all of our four methods is reasonably high for such a difficult task, and the number of
relations derived by All reached about 4.4 million. The recall of All exceeds 65%, which we believe is
quite high. HB-Ptn suffered from low recall, probably due to the data sparseness in WCorpus. Table 5
shows examples of the derived happens-before relations alongside L2-classes of the templates, the L2-
links between the classes and the original Japanese templates. The acquired relations included many
unexpected but correct happens-before relations, like compose (a piece of music) X⊃relax by X.

Actually, it is difficult to fairly compare our work and previous works on temporal relation acqui-
sition, due to differences in language, the data used, and the methodologies. Nonetheless, our result
with 79.5% precision is at least five times larger than the English data released by Chambers et al.
(cs.stanford.edu/people/nc/schemas), which contains around 870,000 “before” relation candidates and
happens-before database in the VerbOcean (Chklovski and Pantel, 2004a) that covers 4,205 relations.
Considering our method is completely different from theirs, we believe that our contribution is valuable.

Setting/Method Precision (%) # of Pairs Recall (%)
H1 83.5 1,113,280 18.0
H2 70.5 1,524,557 20.8
H3 67.0 3,837,116 49.7
All 79.5 4,387,781 67.5
HB-Ptn 53.0 32,288 0.3
Random 18.0 28,717,454 100.0

Table 4: Happens-before derivation performance.

boil X⇒eat X

PREPARATION Class Future+→ EXECUTION Class
X wo niru⇒ X wo taberu
compose (a piece of music) X⇒relax by X

SYMBOLIZATION Class Past+← WORKING Class
X wo sakkyoku-suru⇒ X de rirakkusu-suru

Table 5: Examples of happens-before relation.

5.2 Entailment Relation
Below are our proposed methods to derive entailment relations.

Present+.DIFF extracts the 32 class pairs that are composed of DIFFERENT L2-classes and
are connected by the Present+ links, meaning that a template in a class must occur simul-
taneously with another template in another class, and ranks all the possible template pairs
taken from each class pair using Hashimoto et al.’s (2009) conditional probability based
similarity measure for entailment recognition.

Present+.SAME extracts the 41 class pairs that are composed of the SAME L2-classes and
are connected with the Present+ links, and ranks all the template pairs from each class
pair using Hashimoto et al.’s similarity.

Past+ extracts the 55 pairs of L2-classes that are connected with the Past+ links, meaning that
a template in a class must occur before another, and ranks all the template pairs from each
class pair using Hashimoto et al.’s similarity.
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Baseline-HAS is our baseline which is our implementation of Hashimoto et al. (2009) for entailment
recognition; it ranks all the template pairs in TP100 by Hashimoto et al.’s score. Our methods can be
seen as the restrictions of the output of the baseline method using the extracted PPTT’s class pairs.
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Figure 2: Entailment derivation performance.

Three annotators hand-labeled 500
random samples from the top 100,000
template pairs for each method. The
kappa was .59 (moderate agreement),
and the results of their majority vote
are presented in Figure 2. Table 6
shows examples of Proposed methods’
outputs. The restriction of the class
pairs in our method contributed to much
higher precision than using the state-of-
the-art method alone.

Since the precision of Past+ is quite
high for the top 100,000 pairs, we an-
notated an additional 500 random sam-
ples from the top 500,000 pairs. Accord-
ing to this annotation, the top 408,610
pairs had 70% precision, implying that
after merging all the top pairs extracted
by Present+.DIFF, Present+.SAME and Past+ whose precisions exceeded 70%, we had 0.49 million
entailment pairs with 70% precision. With Baseline-HAS, we derived only 24,000 with the same preci-
sion. Also, the Japanese WordNet (v.1.1) covers only 2.4% of the pairs in the manually annotated positive
samples from our proposed methods through the ‘synsets’ or any ‘synlinks’. We analyzed 200 samples
from the positive samples not covered by WordNet and found that 49.5% are the hyponymy type (e.g.,
boil X⊃heat X), 39.0% are the backward presupposition type (e.g., complete X⊃start X), and 11.5% are
the synonymy type (e.g., X passes away⊃X dies). This seems to imply that our methods are better at
deriving all types of entailment, while WordNet might be effective for only the synonymy type. In addi-
tion, by analyzing all the positive samples, we confirmed that the different types of entailment pairs were
derived with different L2-links; 88.1% of the positive samples from Present+.DIFF and Present+.SAME
require that two events referred to by the two templates occur with temporal overlap (e.g., equip X⊃X
exists, i.e. X is equipped while X exists), while 96.7% of those from Past+ were the backward presuppo-
sition type, in which an event entails another event that happened before it. This shows that the L2-links
were useful for deriving various fine-grained types of entailment.

get X⊃X exists (X wo nyuushu-suru ⊃ X ga sonzai-suru ) ACQUISITION Class Present+→ BEING Class

evolve into X⊃change into X (X ni shinka-suru ⊃ X ni kawaru ) TRANSFORMATION Class Present+→ TRANSFORMATION Class

close (a shop) X⊃make X (X wo heiten-suru ⊃ X wo tsukuru ) FINISHING Class Past+→ CREATION Class

Table 6: Examples of entailment.

5.3 Anomalous Obstruction Relation
We assumed that template1 (T1) like X is sold out has an anomalous obstruction relation with template2

(T2) like buy X (denoted as X is sold out;(cannot) buy X) iff: (A) the event expressed by T1 prevents
the event expressed by T2 from occurring; (B) T1 expresses an event that should not happen if everything
about the variable X goes as expected; and (C) T2 expresses another event in which the function of X is
executed, enhanced, or prepared. We derived anomalous obstructions, by generating all of the possible
template pairs from the 88 L2-class pairs connected by Future− L2-links. These indicate that the events
expressed by the templates in the first class of a pair disable the events expressed by the templates in the
second class. Also, to confirm that the templates of the first class in a pair express an unexpected event,
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we required the disabler class to have the inhibitory polarity and the disabled class to be excitatory.
Otherwise, we would obtain such pairs as INITIATION;PLANNING (e.g., start X;schedule X), which
indeed express the prevention relation (Barker and Szpakowicz, 1995), i.e., “scheduling X would not
occur after starting X,” which is different from anomalous obstruction.

Three annotators annotated 200 random samples for each method, and the results of their majority
vote are summarized in Table 7, where Random refers to a random baseline using TP100. The recall
was estimated using the number of positive samples provided by Random. The kappa was .60 (moderate
agreement). 73.5% precision, 26.4% recall against the positive samples in TP100, and more than one
million outputs of our proposed method are reasonably high/large results for this difficult task. Table 8
shows examples of Proposed’s outputs. “(cannot)” was attached to disabled templates for readability.

Setting/Method Precision # of Pairs Recall
Proposed 73.5 1,081,405 26.4
Random 10.5 28,717,454 100.0

Table 7: Performance of anomalous obstruc-
tion derivation.

prohibit X;(cannot) exhibit X PROHIBIT Class Future−→ EXECUTION Class
X wo kinshi-suru;X wo kookai-suru

break X;(cannot) utilize X COLLAPSE CLASS
Future−→ EXECUTION CLASS

X wo kowasu;X wo riyo-suru

Table 8: Examples of anomalous obstruction.

6 Conclusion

In this work, we manually constructed a Phased Predicate Template Taxonomy (PPTT), which is a net-
work of semantically coherent classes of templates and derived semantic relations including entailment
from it in a million-instance scale. Future work will extend PPTT to cover non-excitatory/non-inhibitory
templates and generate richer structural knowledge similar to full-fledged scripts (Schank and Abelson,
1977) and narrative schemas (Chambers and Jurafsky, 2011).
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