@inproceedings{araki-etal-2016-generating,
title = "Generating Questions and Multiple-Choice Answers using Semantic Analysis of Texts",
author = "Araki, Jun and
Rajagopal, Dheeraj and
Sankaranarayanan, Sreecharan and
Holm, Susan and
Yamakawa, Yukari and
Mitamura, Teruko",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1107/",
pages = "1125--1136",
abstract = "We present a novel approach to automated question generation that improves upon prior work both from a technology perspective and from an assessment perspective. Our system is aimed at engaging language learners by generating multiple-choice questions which utilize specific inference steps over multiple sentences, namely coreference resolution and paraphrase detection. The system also generates correct answers and semantically-motivated phrase-level distractors as answer choices. Evaluation by human annotators indicates that our approach requires a larger number of inference steps, which necessitate deeper semantic understanding of texts than a traditional single-sentence approach."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="araki-etal-2016-generating">
<titleInfo>
<title>Generating Questions and Multiple-Choice Answers using Semantic Analysis of Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Araki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dheeraj</namePart>
<namePart type="family">Rajagopal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sreecharan</namePart>
<namePart type="family">Sankaranarayanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Susan</namePart>
<namePart type="family">Holm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yukari</namePart>
<namePart type="family">Yamakawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teruko</namePart>
<namePart type="family">Mitamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a novel approach to automated question generation that improves upon prior work both from a technology perspective and from an assessment perspective. Our system is aimed at engaging language learners by generating multiple-choice questions which utilize specific inference steps over multiple sentences, namely coreference resolution and paraphrase detection. The system also generates correct answers and semantically-motivated phrase-level distractors as answer choices. Evaluation by human annotators indicates that our approach requires a larger number of inference steps, which necessitate deeper semantic understanding of texts than a traditional single-sentence approach.</abstract>
<identifier type="citekey">araki-etal-2016-generating</identifier>
<location>
<url>https://aclanthology.org/C16-1107/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>1125</start>
<end>1136</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Questions and Multiple-Choice Answers using Semantic Analysis of Texts
%A Araki, Jun
%A Rajagopal, Dheeraj
%A Sankaranarayanan, Sreecharan
%A Holm, Susan
%A Yamakawa, Yukari
%A Mitamura, Teruko
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F araki-etal-2016-generating
%X We present a novel approach to automated question generation that improves upon prior work both from a technology perspective and from an assessment perspective. Our system is aimed at engaging language learners by generating multiple-choice questions which utilize specific inference steps over multiple sentences, namely coreference resolution and paraphrase detection. The system also generates correct answers and semantically-motivated phrase-level distractors as answer choices. Evaluation by human annotators indicates that our approach requires a larger number of inference steps, which necessitate deeper semantic understanding of texts than a traditional single-sentence approach.
%U https://aclanthology.org/C16-1107/
%P 1125-1136
Markdown (Informal)
[Generating Questions and Multiple-Choice Answers using Semantic Analysis of Texts](https://aclanthology.org/C16-1107/) (Araki et al., COLING 2016)
ACL