@inproceedings{servan-etal-2016-word2vec-vs,
title = "{W}ord2{V}ec vs {DB}nary: Augmenting {METEOR} using Vector Representations or Lexical Resources?",
author = "Servan, Christophe and
B{\'e}rard, Alexandre and
Elloumi, Zied and
Blanchon, Herv{\'e} and
Besacier, Laurent",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1110/",
pages = "1159--1168",
abstract = "This paper presents an approach combining lexico-semantic resources and distributed representations of words applied to the evaluation in machine translation (MT). This study is made through the enrichment of a well-known MT evaluation metric: METEOR. METEOR enables an approximate match (synonymy or morphological similarity) between an automatic and a reference translation. Our experiments are made in the framework of the Metrics task of WMT 2014. We show that distributed representations are a good alternative to lexico-semanticresources for MT evaluation and they can even bring interesting additional information. The augmented versions of METEOR, using vector representations, are made available on our Github page."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="servan-etal-2016-word2vec-vs">
<titleInfo>
<title>Word2Vec vs DBnary: Augmenting METEOR using Vector Representations or Lexical Resources?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christophe</namePart>
<namePart type="family">Servan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Bérard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zied</namePart>
<namePart type="family">Elloumi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hervé</namePart>
<namePart type="family">Blanchon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Besacier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents an approach combining lexico-semantic resources and distributed representations of words applied to the evaluation in machine translation (MT). This study is made through the enrichment of a well-known MT evaluation metric: METEOR. METEOR enables an approximate match (synonymy or morphological similarity) between an automatic and a reference translation. Our experiments are made in the framework of the Metrics task of WMT 2014. We show that distributed representations are a good alternative to lexico-semanticresources for MT evaluation and they can even bring interesting additional information. The augmented versions of METEOR, using vector representations, are made available on our Github page.</abstract>
<identifier type="citekey">servan-etal-2016-word2vec-vs</identifier>
<location>
<url>https://aclanthology.org/C16-1110/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>1159</start>
<end>1168</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word2Vec vs DBnary: Augmenting METEOR using Vector Representations or Lexical Resources?
%A Servan, Christophe
%A Bérard, Alexandre
%A Elloumi, Zied
%A Blanchon, Hervé
%A Besacier, Laurent
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F servan-etal-2016-word2vec-vs
%X This paper presents an approach combining lexico-semantic resources and distributed representations of words applied to the evaluation in machine translation (MT). This study is made through the enrichment of a well-known MT evaluation metric: METEOR. METEOR enables an approximate match (synonymy or morphological similarity) between an automatic and a reference translation. Our experiments are made in the framework of the Metrics task of WMT 2014. We show that distributed representations are a good alternative to lexico-semanticresources for MT evaluation and they can even bring interesting additional information. The augmented versions of METEOR, using vector representations, are made available on our Github page.
%U https://aclanthology.org/C16-1110/
%P 1159-1168
Markdown (Informal)
[Word2Vec vs DBnary: Augmenting METEOR using Vector Representations or Lexical Resources?](https://aclanthology.org/C16-1110/) (Servan et al., COLING 2016)
ACL