@inproceedings{balikas-etal-2016-modeling,
title = "Modeling topic dependencies in semantically coherent text spans with copulas",
author = "Balikas, Georgios and
Amoualian, Hesam and
Clausel, Marianne and
Gaussier, Eric and
Amini, Massih R.",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1166",
pages = "1767--1776",
abstract = "The exchangeability assumption in topic models like Latent Dirichlet Allocation (LDA) often results in inferring inconsistent topics for the words of text spans like noun-phrases, which are usually expected to be topically coherent. We propose copulaLDA, that extends LDA by integrating part of the text structure to the model and relaxes the conditional independence assumption between the word-specific latent topics given the per-document topic distributions. To this end, we assume that the words of text spans like noun-phrases are topically bound and we model this dependence with copulas. We demonstrate empirically the effectiveness of copulaLDA on both intrinsic and extrinsic evaluation tasks on several publicly available corpora.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="balikas-etal-2016-modeling">
<titleInfo>
<title>Modeling topic dependencies in semantically coherent text spans with copulas</title>
</titleInfo>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Balikas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hesam</namePart>
<namePart type="family">Amoualian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianne</namePart>
<namePart type="family">Clausel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Gaussier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Massih</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Amini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The exchangeability assumption in topic models like Latent Dirichlet Allocation (LDA) often results in inferring inconsistent topics for the words of text spans like noun-phrases, which are usually expected to be topically coherent. We propose copulaLDA, that extends LDA by integrating part of the text structure to the model and relaxes the conditional independence assumption between the word-specific latent topics given the per-document topic distributions. To this end, we assume that the words of text spans like noun-phrases are topically bound and we model this dependence with copulas. We demonstrate empirically the effectiveness of copulaLDA on both intrinsic and extrinsic evaluation tasks on several publicly available corpora.</abstract>
<identifier type="citekey">balikas-etal-2016-modeling</identifier>
<location>
<url>https://aclanthology.org/C16-1166</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>1767</start>
<end>1776</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling topic dependencies in semantically coherent text spans with copulas
%A Balikas, Georgios
%A Amoualian, Hesam
%A Clausel, Marianne
%A Gaussier, Eric
%A Amini, Massih R.
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F balikas-etal-2016-modeling
%X The exchangeability assumption in topic models like Latent Dirichlet Allocation (LDA) often results in inferring inconsistent topics for the words of text spans like noun-phrases, which are usually expected to be topically coherent. We propose copulaLDA, that extends LDA by integrating part of the text structure to the model and relaxes the conditional independence assumption between the word-specific latent topics given the per-document topic distributions. To this end, we assume that the words of text spans like noun-phrases are topically bound and we model this dependence with copulas. We demonstrate empirically the effectiveness of copulaLDA on both intrinsic and extrinsic evaluation tasks on several publicly available corpora.
%U https://aclanthology.org/C16-1166
%P 1767-1776
Markdown (Informal)
[Modeling topic dependencies in semantically coherent text spans with copulas](https://aclanthology.org/C16-1166) (Balikas et al., COLING 2016)
ACL