@inproceedings{braud-etal-2016-multi,
title = "Multi-view and multi-task training of {RST} discourse parsers",
author = "Braud, Chlo{\'e} and
Plank, Barbara and
S{\o}gaard, Anders",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1179/",
pages = "1903--1913",
abstract = "We experiment with different ways of training LSTM networks to predict RST discourse trees. The main challenge for RST discourse parsing is the limited amounts of training data. We combat this by regularizing our models using task supervision from related tasks as well as alternative views on discourse structures. We show that a simple LSTM sequential discourse parser takes advantage of this multi-view and multi-task framework with 12-15{\%} error reductions over our baseline (depending on the metric) and results that rival more complex state-of-the-art parsers."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="braud-etal-2016-multi">
<titleInfo>
<title>Multi-view and multi-task training of RST discourse parsers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chloé</namePart>
<namePart type="family">Braud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We experiment with different ways of training LSTM networks to predict RST discourse trees. The main challenge for RST discourse parsing is the limited amounts of training data. We combat this by regularizing our models using task supervision from related tasks as well as alternative views on discourse structures. We show that a simple LSTM sequential discourse parser takes advantage of this multi-view and multi-task framework with 12-15% error reductions over our baseline (depending on the metric) and results that rival more complex state-of-the-art parsers.</abstract>
<identifier type="citekey">braud-etal-2016-multi</identifier>
<location>
<url>https://aclanthology.org/C16-1179/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>1903</start>
<end>1913</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-view and multi-task training of RST discourse parsers
%A Braud, Chloé
%A Plank, Barbara
%A Søgaard, Anders
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F braud-etal-2016-multi
%X We experiment with different ways of training LSTM networks to predict RST discourse trees. The main challenge for RST discourse parsing is the limited amounts of training data. We combat this by regularizing our models using task supervision from related tasks as well as alternative views on discourse structures. We show that a simple LSTM sequential discourse parser takes advantage of this multi-view and multi-task framework with 12-15% error reductions over our baseline (depending on the metric) and results that rival more complex state-of-the-art parsers.
%U https://aclanthology.org/C16-1179/
%P 1903-1913
Markdown (Informal)
[Multi-view and multi-task training of RST discourse parsers](https://aclanthology.org/C16-1179/) (Braud et al., COLING 2016)
ACL
- Chloé Braud, Barbara Plank, and Anders Søgaard. 2016. Multi-view and multi-task training of RST discourse parsers. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 1903–1913, Osaka, Japan. The COLING 2016 Organizing Committee.