@inproceedings{venugopal-rus-2016-joint,
title = "Joint Inference for Mode Identification in Tutorial Dialogues",
author = "Venugopal, Deepak and
Rus, Vasile",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1188",
pages = "2000--2011",
abstract = "Identifying dialogue acts and dialogue modes during tutorial interactions is an extremely crucial sub-step in understanding patterns of effective tutor-tutee interactions. In this work, we develop a novel joint inference method that labels each utterance in a tutoring dialogue session with a dialogue act and a specific mode from a set of pre-defined dialogue acts and modes, respectively. Specifically, we develop our joint model using Markov Logic Networks (MLNs), a framework that combines first-order logic with probabilities, and is thus capable of representing complex, uncertain knowledge. We define first-order formulas in our MLN that encode the inter-dependencies between dialogue modes and more fine-grained dialogue actions. We then use a joint inference to jointly label the modes as well as the dialogue acts in an utterance. We compare our system against a pipeline system based on SVMs on a real-world dataset with tutoring sessions of over 500 students. Our results show that the joint inference system is far more effective than the pipeline system in mode detection, and improves over the performance of the pipeline system by about 6 points in F1 score. The joint inference system also performs much better than the pipeline system in the context of labeling modes that highlight important pedagogical steps in tutoring.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="venugopal-rus-2016-joint">
<titleInfo>
<title>Joint Inference for Mode Identification in Tutorial Dialogues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deepak</namePart>
<namePart type="family">Venugopal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vasile</namePart>
<namePart type="family">Rus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Identifying dialogue acts and dialogue modes during tutorial interactions is an extremely crucial sub-step in understanding patterns of effective tutor-tutee interactions. In this work, we develop a novel joint inference method that labels each utterance in a tutoring dialogue session with a dialogue act and a specific mode from a set of pre-defined dialogue acts and modes, respectively. Specifically, we develop our joint model using Markov Logic Networks (MLNs), a framework that combines first-order logic with probabilities, and is thus capable of representing complex, uncertain knowledge. We define first-order formulas in our MLN that encode the inter-dependencies between dialogue modes and more fine-grained dialogue actions. We then use a joint inference to jointly label the modes as well as the dialogue acts in an utterance. We compare our system against a pipeline system based on SVMs on a real-world dataset with tutoring sessions of over 500 students. Our results show that the joint inference system is far more effective than the pipeline system in mode detection, and improves over the performance of the pipeline system by about 6 points in F1 score. The joint inference system also performs much better than the pipeline system in the context of labeling modes that highlight important pedagogical steps in tutoring.</abstract>
<identifier type="citekey">venugopal-rus-2016-joint</identifier>
<location>
<url>https://aclanthology.org/C16-1188</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>2000</start>
<end>2011</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint Inference for Mode Identification in Tutorial Dialogues
%A Venugopal, Deepak
%A Rus, Vasile
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F venugopal-rus-2016-joint
%X Identifying dialogue acts and dialogue modes during tutorial interactions is an extremely crucial sub-step in understanding patterns of effective tutor-tutee interactions. In this work, we develop a novel joint inference method that labels each utterance in a tutoring dialogue session with a dialogue act and a specific mode from a set of pre-defined dialogue acts and modes, respectively. Specifically, we develop our joint model using Markov Logic Networks (MLNs), a framework that combines first-order logic with probabilities, and is thus capable of representing complex, uncertain knowledge. We define first-order formulas in our MLN that encode the inter-dependencies between dialogue modes and more fine-grained dialogue actions. We then use a joint inference to jointly label the modes as well as the dialogue acts in an utterance. We compare our system against a pipeline system based on SVMs on a real-world dataset with tutoring sessions of over 500 students. Our results show that the joint inference system is far more effective than the pipeline system in mode detection, and improves over the performance of the pipeline system by about 6 points in F1 score. The joint inference system also performs much better than the pipeline system in the context of labeling modes that highlight important pedagogical steps in tutoring.
%U https://aclanthology.org/C16-1188
%P 2000-2011
Markdown (Informal)
[Joint Inference for Mode Identification in Tutorial Dialogues](https://aclanthology.org/C16-1188) (Venugopal & Rus, COLING 2016)
ACL