@inproceedings{bao-etal-2016-constraint,
title = "Constraint-Based Question Answering with Knowledge Graph",
author = "Bao, Junwei and
Duan, Nan and
Yan, Zhao and
Zhou, Ming and
Zhao, Tiejun",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1236/",
pages = "2503--2514",
abstract = "WebQuestions and SimpleQuestions are two benchmark data-sets commonly used in recent knowledge-based question answering (KBQA) work. Most questions in them are {\textquoteleft}simple' questions which can be answered based on a single relation in the knowledge base. Such data-sets lack the capability of evaluating KBQA systems on complicated questions. Motivated by this issue, we release a new data-set, namely ComplexQuestions, aiming to measure the quality of KBQA systems on {\textquoteleft}multi-constraint' questions which require multiple knowledge base relations to get the answer. Beside, we propose a novel systematic KBQA approach to solve multi-constraint questions. Compared to state-of-the-art methods, our approach not only obtains comparable results on the two existing benchmark data-sets, but also achieves significant improvements on the ComplexQuestions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bao-etal-2016-constraint">
<titleInfo>
<title>Constraint-Based Question Answering with Knowledge Graph</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junwei</namePart>
<namePart type="family">Bao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nan</namePart>
<namePart type="family">Duan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhao</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiejun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>WebQuestions and SimpleQuestions are two benchmark data-sets commonly used in recent knowledge-based question answering (KBQA) work. Most questions in them are ‘simple’ questions which can be answered based on a single relation in the knowledge base. Such data-sets lack the capability of evaluating KBQA systems on complicated questions. Motivated by this issue, we release a new data-set, namely ComplexQuestions, aiming to measure the quality of KBQA systems on ‘multi-constraint’ questions which require multiple knowledge base relations to get the answer. Beside, we propose a novel systematic KBQA approach to solve multi-constraint questions. Compared to state-of-the-art methods, our approach not only obtains comparable results on the two existing benchmark data-sets, but also achieves significant improvements on the ComplexQuestions.</abstract>
<identifier type="citekey">bao-etal-2016-constraint</identifier>
<location>
<url>https://aclanthology.org/C16-1236/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>2503</start>
<end>2514</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Constraint-Based Question Answering with Knowledge Graph
%A Bao, Junwei
%A Duan, Nan
%A Yan, Zhao
%A Zhou, Ming
%A Zhao, Tiejun
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F bao-etal-2016-constraint
%X WebQuestions and SimpleQuestions are two benchmark data-sets commonly used in recent knowledge-based question answering (KBQA) work. Most questions in them are ‘simple’ questions which can be answered based on a single relation in the knowledge base. Such data-sets lack the capability of evaluating KBQA systems on complicated questions. Motivated by this issue, we release a new data-set, namely ComplexQuestions, aiming to measure the quality of KBQA systems on ‘multi-constraint’ questions which require multiple knowledge base relations to get the answer. Beside, we propose a novel systematic KBQA approach to solve multi-constraint questions. Compared to state-of-the-art methods, our approach not only obtains comparable results on the two existing benchmark data-sets, but also achieves significant improvements on the ComplexQuestions.
%U https://aclanthology.org/C16-1236/
%P 2503-2514
Markdown (Informal)
[Constraint-Based Question Answering with Knowledge Graph](https://aclanthology.org/C16-1236/) (Bao et al., COLING 2016)
ACL
- Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. 2016. Constraint-Based Question Answering with Knowledge Graph. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 2503–2514, Osaka, Japan. The COLING 2016 Organizing Committee.