@inproceedings{dey-etal-2016-paraphrase,
    title = "A Paraphrase and Semantic Similarity Detection System for User Generated Short-Text Content on Microblogs",
    author = "Dey, Kuntal  and
      Shrivastava, Ritvik  and
      Kaushik, Saroj",
    editor = "Matsumoto, Yuji  and
      Prasad, Rashmi",
    booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
    month = dec,
    year = "2016",
    address = "Osaka, Japan",
    publisher = "The COLING 2016 Organizing Committee",
    url = "https://aclanthology.org/C16-1271/",
    pages = "2880--2890",
    abstract = "Existing systems deliver high accuracy and F1-scores for detecting paraphrase and semantic similarity on traditional clean-text corpus. For instance, on the clean-text Microsoft Paraphrase benchmark database, the existing systems attain an accuracy as high as 0:8596. However, existing systems for detecting paraphrases and semantic similarity on user-generated short-text content on microblogs such as Twitter, comprising of noisy and ad hoc short-text, needs significant research attention. In this paper, we propose a machine learning based approach towards this. We propose a set of features that, although well-known in the NLP literature for solving other problems, have not been explored for detecting paraphrase or semantic similarity, on noisy user-generated short-text data such as Twitter. We apply support vector machine (SVM) based learning. We use the benchmark Twitter paraphrase data, released as a part of SemEval 2015, for experiments. Our system delivers a paraphrase detection F1-score of 0.717 and semantic similarity detection F1-score of 0.741, thereby significantly outperforming the existing systems, that deliver F1-scores of 0.696 and 0.724 for the two problems respectively. Our features also allow us to obtain a rank among the top-10, when trained on the Microsoft Paraphrase corpus and tested on the corresponding test data, thereby empirically establishing our approach as ubiquitous across the different paraphrase detection databases."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dey-etal-2016-paraphrase">
    <titleInfo>
        <title>A Paraphrase and Semantic Similarity Detection System for User Generated Short-Text Content on Microblogs</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Kuntal</namePart>
        <namePart type="family">Dey</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ritvik</namePart>
        <namePart type="family">Shrivastava</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Saroj</namePart>
        <namePart type="family">Kaushik</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2016-12</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Yuji</namePart>
            <namePart type="family">Matsumoto</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rashmi</namePart>
            <namePart type="family">Prasad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>The COLING 2016 Organizing Committee</publisher>
            <place>
                <placeTerm type="text">Osaka, Japan</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Existing systems deliver high accuracy and F1-scores for detecting paraphrase and semantic similarity on traditional clean-text corpus. For instance, on the clean-text Microsoft Paraphrase benchmark database, the existing systems attain an accuracy as high as 0:8596. However, existing systems for detecting paraphrases and semantic similarity on user-generated short-text content on microblogs such as Twitter, comprising of noisy and ad hoc short-text, needs significant research attention. In this paper, we propose a machine learning based approach towards this. We propose a set of features that, although well-known in the NLP literature for solving other problems, have not been explored for detecting paraphrase or semantic similarity, on noisy user-generated short-text data such as Twitter. We apply support vector machine (SVM) based learning. We use the benchmark Twitter paraphrase data, released as a part of SemEval 2015, for experiments. Our system delivers a paraphrase detection F1-score of 0.717 and semantic similarity detection F1-score of 0.741, thereby significantly outperforming the existing systems, that deliver F1-scores of 0.696 and 0.724 for the two problems respectively. Our features also allow us to obtain a rank among the top-10, when trained on the Microsoft Paraphrase corpus and tested on the corresponding test data, thereby empirically establishing our approach as ubiquitous across the different paraphrase detection databases.</abstract>
    <identifier type="citekey">dey-etal-2016-paraphrase</identifier>
    <location>
        <url>https://aclanthology.org/C16-1271/</url>
    </location>
    <part>
        <date>2016-12</date>
        <extent unit="page">
            <start>2880</start>
            <end>2890</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Paraphrase and Semantic Similarity Detection System for User Generated Short-Text Content on Microblogs
%A Dey, Kuntal
%A Shrivastava, Ritvik
%A Kaushik, Saroj
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F dey-etal-2016-paraphrase
%X Existing systems deliver high accuracy and F1-scores for detecting paraphrase and semantic similarity on traditional clean-text corpus. For instance, on the clean-text Microsoft Paraphrase benchmark database, the existing systems attain an accuracy as high as 0:8596. However, existing systems for detecting paraphrases and semantic similarity on user-generated short-text content on microblogs such as Twitter, comprising of noisy and ad hoc short-text, needs significant research attention. In this paper, we propose a machine learning based approach towards this. We propose a set of features that, although well-known in the NLP literature for solving other problems, have not been explored for detecting paraphrase or semantic similarity, on noisy user-generated short-text data such as Twitter. We apply support vector machine (SVM) based learning. We use the benchmark Twitter paraphrase data, released as a part of SemEval 2015, for experiments. Our system delivers a paraphrase detection F1-score of 0.717 and semantic similarity detection F1-score of 0.741, thereby significantly outperforming the existing systems, that deliver F1-scores of 0.696 and 0.724 for the two problems respectively. Our features also allow us to obtain a rank among the top-10, when trained on the Microsoft Paraphrase corpus and tested on the corresponding test data, thereby empirically establishing our approach as ubiquitous across the different paraphrase detection databases.
%U https://aclanthology.org/C16-1271/
%P 2880-2890
Markdown (Informal)
[A Paraphrase and Semantic Similarity Detection System for User Generated Short-Text Content on Microblogs](https://aclanthology.org/C16-1271/) (Dey et al., COLING 2016)
ACL