@inproceedings{loukina-etal-2016-textual,
title = "Textual complexity as a predictor of difficulty of listening items in language proficiency tests",
author = "Loukina, Anastassia and
Yoon, Su-Youn and
Sakano, Jennifer and
Wei, Youhua and
Sheehan, Kathy",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1306",
pages = "3245--3253",
abstract = "In this paper we explore to what extent the difficulty of listening items in an English language proficiency test can be predicted by the textual properties of the prompt. We show that a system based on multiple text complexity features can predict item difficulty for several different item types and for some items achieves higher accuracy than human estimates of item difficulty.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="loukina-etal-2016-textual">
<titleInfo>
<title>Textual complexity as a predictor of difficulty of listening items in language proficiency tests</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anastassia</namePart>
<namePart type="family">Loukina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Su-Youn</namePart>
<namePart type="family">Yoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jennifer</namePart>
<namePart type="family">Sakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Youhua</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathy</namePart>
<namePart type="family">Sheehan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we explore to what extent the difficulty of listening items in an English language proficiency test can be predicted by the textual properties of the prompt. We show that a system based on multiple text complexity features can predict item difficulty for several different item types and for some items achieves higher accuracy than human estimates of item difficulty.</abstract>
<identifier type="citekey">loukina-etal-2016-textual</identifier>
<location>
<url>https://aclanthology.org/C16-1306</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>3245</start>
<end>3253</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Textual complexity as a predictor of difficulty of listening items in language proficiency tests
%A Loukina, Anastassia
%A Yoon, Su-Youn
%A Sakano, Jennifer
%A Wei, Youhua
%A Sheehan, Kathy
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F loukina-etal-2016-textual
%X In this paper we explore to what extent the difficulty of listening items in an English language proficiency test can be predicted by the textual properties of the prompt. We show that a system based on multiple text complexity features can predict item difficulty for several different item types and for some items achieves higher accuracy than human estimates of item difficulty.
%U https://aclanthology.org/C16-1306
%P 3245-3253
Markdown (Informal)
[Textual complexity as a predictor of difficulty of listening items in language proficiency tests](https://aclanthology.org/C16-1306) (Loukina et al., COLING 2016)
ACL