@inproceedings{hu-etal-2016-construction,
title = "The Construction of a {C}hinese Collocational Knowledge Resource and Its Application for Second Language Acquisition",
author = "Hu, Renfen and
Chen, Jiayong and
Chen, Kuang-hua",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1307/",
pages = "3254--3263",
abstract = "The appropriate use of collocations is a challenge for second language acquisition. However, high quality and easily accessible Chinese collocation resources are not available for both teachers and students. This paper presents the design and construction of a large scale resource of Chinese collocational knowledge, and a web-based application (OCCA, Online Chinese Collocation Assistant) which offers free and convenient collocation search service to end users. We define and classify collocations based on practical language acquisition needs and utilize a syntax based method to extract nine types of collocations. Totally 37 extraction rules are compiled with word, POS and dependency relation features, 1,750,000 collocations are extracted from a corpus for L2 learning and complementary Wikipedia data, and OCCA is implemented based on these extracted collocations. By comparing OCCA with two traditional collocation dictionaries, we find OCCA has higher entry coverage and collocation quantity, and our method achieves quite low error rate at less than 5{\%}. We also discuss how to apply collocational knowledge to grammatical error detection and demonstrate comparable performance to the best results in 2015 NLP-TEA CGED shared task. The preliminary experiment shows that the collocation knowledge is helpful in detecting all the four types of grammatical errors."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hu-etal-2016-construction">
<titleInfo>
<title>The Construction of a Chinese Collocational Knowledge Resource and Its Application for Second Language Acquisition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Renfen</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiayong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuang-hua</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The appropriate use of collocations is a challenge for second language acquisition. However, high quality and easily accessible Chinese collocation resources are not available for both teachers and students. This paper presents the design and construction of a large scale resource of Chinese collocational knowledge, and a web-based application (OCCA, Online Chinese Collocation Assistant) which offers free and convenient collocation search service to end users. We define and classify collocations based on practical language acquisition needs and utilize a syntax based method to extract nine types of collocations. Totally 37 extraction rules are compiled with word, POS and dependency relation features, 1,750,000 collocations are extracted from a corpus for L2 learning and complementary Wikipedia data, and OCCA is implemented based on these extracted collocations. By comparing OCCA with two traditional collocation dictionaries, we find OCCA has higher entry coverage and collocation quantity, and our method achieves quite low error rate at less than 5%. We also discuss how to apply collocational knowledge to grammatical error detection and demonstrate comparable performance to the best results in 2015 NLP-TEA CGED shared task. The preliminary experiment shows that the collocation knowledge is helpful in detecting all the four types of grammatical errors.</abstract>
<identifier type="citekey">hu-etal-2016-construction</identifier>
<location>
<url>https://aclanthology.org/C16-1307/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>3254</start>
<end>3263</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Construction of a Chinese Collocational Knowledge Resource and Its Application for Second Language Acquisition
%A Hu, Renfen
%A Chen, Jiayong
%A Chen, Kuang-hua
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F hu-etal-2016-construction
%X The appropriate use of collocations is a challenge for second language acquisition. However, high quality and easily accessible Chinese collocation resources are not available for both teachers and students. This paper presents the design and construction of a large scale resource of Chinese collocational knowledge, and a web-based application (OCCA, Online Chinese Collocation Assistant) which offers free and convenient collocation search service to end users. We define and classify collocations based on practical language acquisition needs and utilize a syntax based method to extract nine types of collocations. Totally 37 extraction rules are compiled with word, POS and dependency relation features, 1,750,000 collocations are extracted from a corpus for L2 learning and complementary Wikipedia data, and OCCA is implemented based on these extracted collocations. By comparing OCCA with two traditional collocation dictionaries, we find OCCA has higher entry coverage and collocation quantity, and our method achieves quite low error rate at less than 5%. We also discuss how to apply collocational knowledge to grammatical error detection and demonstrate comparable performance to the best results in 2015 NLP-TEA CGED shared task. The preliminary experiment shows that the collocation knowledge is helpful in detecting all the four types of grammatical errors.
%U https://aclanthology.org/C16-1307/
%P 3254-3263
Markdown (Informal)
[The Construction of a Chinese Collocational Knowledge Resource and Its Application for Second Language Acquisition](https://aclanthology.org/C16-1307/) (Hu et al., COLING 2016)
ACL