@inproceedings{singh-etal-2016-ocr,
title = "{OCR}++: A Robust Framework For Information Extraction from Scholarly Articles",
author = "Singh, Mayank and
Barua, Barnopriyo and
Palod, Priyank and
Garg, Manvi and
Satapathy, Sidhartha and
Bushi, Samuel and
Ayush, Kumar and
Sai Rohith, Krishna and
Gamidi, Tulasi and
Goyal, Pawan and
Mukherjee, Animesh",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1320/",
pages = "3390--3400",
abstract = "This paper proposes OCR++, an open-source framework designed for a variety of information extraction tasks from scholarly articles including metadata (title, author names, affiliation and e-mail), structure (section headings and body text, table and figure headings, URLs and footnotes) and bibliography (citation instances and references). We analyze a diverse set of scientific articles written in English to understand generic writing patterns and formulate rules to develop this hybrid framework. Extensive evaluations show that the proposed framework outperforms the existing state-of-the-art tools by a large margin in structural information extraction along with improved performance in metadata and bibliography extraction tasks, both in terms of accuracy (around 50{\%} improvement) and processing time (around 52{\%} improvement). A user experience study conducted with the help of 30 researchers reveals that the researchers found this system to be very helpful. As an additional objective, we discuss two novel use cases including automatically extracting links to public datasets from the proceedings, which would further accelerate the advancement in digital libraries. The result of the framework can be exported as a whole into structured TEI-encoded documents. Our framework is accessible online at \url{http://www.cnergres.iitkgp.ac.in/OCR++/home/}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-etal-2016-ocr">
<titleInfo>
<title>OCR++: A Robust Framework For Information Extraction from Scholarly Articles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mayank</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barnopriyo</namePart>
<namePart type="family">Barua</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Priyank</namePart>
<namePart type="family">Palod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manvi</namePart>
<namePart type="family">Garg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sidhartha</namePart>
<namePart type="family">Satapathy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Bushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kumar</namePart>
<namePart type="family">Ayush</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Krishna</namePart>
<namePart type="family">Sai Rohith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tulasi</namePart>
<namePart type="family">Gamidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pawan</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Animesh</namePart>
<namePart type="family">Mukherjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes OCR++, an open-source framework designed for a variety of information extraction tasks from scholarly articles including metadata (title, author names, affiliation and e-mail), structure (section headings and body text, table and figure headings, URLs and footnotes) and bibliography (citation instances and references). We analyze a diverse set of scientific articles written in English to understand generic writing patterns and formulate rules to develop this hybrid framework. Extensive evaluations show that the proposed framework outperforms the existing state-of-the-art tools by a large margin in structural information extraction along with improved performance in metadata and bibliography extraction tasks, both in terms of accuracy (around 50% improvement) and processing time (around 52% improvement). A user experience study conducted with the help of 30 researchers reveals that the researchers found this system to be very helpful. As an additional objective, we discuss two novel use cases including automatically extracting links to public datasets from the proceedings, which would further accelerate the advancement in digital libraries. The result of the framework can be exported as a whole into structured TEI-encoded documents. Our framework is accessible online at http://www.cnergres.iitkgp.ac.in/OCR++/home/.</abstract>
<identifier type="citekey">singh-etal-2016-ocr</identifier>
<location>
<url>https://aclanthology.org/C16-1320/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>3390</start>
<end>3400</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T OCR++: A Robust Framework For Information Extraction from Scholarly Articles
%A Singh, Mayank
%A Barua, Barnopriyo
%A Palod, Priyank
%A Garg, Manvi
%A Satapathy, Sidhartha
%A Bushi, Samuel
%A Ayush, Kumar
%A Sai Rohith, Krishna
%A Gamidi, Tulasi
%A Goyal, Pawan
%A Mukherjee, Animesh
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F singh-etal-2016-ocr
%X This paper proposes OCR++, an open-source framework designed for a variety of information extraction tasks from scholarly articles including metadata (title, author names, affiliation and e-mail), structure (section headings and body text, table and figure headings, URLs and footnotes) and bibliography (citation instances and references). We analyze a diverse set of scientific articles written in English to understand generic writing patterns and formulate rules to develop this hybrid framework. Extensive evaluations show that the proposed framework outperforms the existing state-of-the-art tools by a large margin in structural information extraction along with improved performance in metadata and bibliography extraction tasks, both in terms of accuracy (around 50% improvement) and processing time (around 52% improvement). A user experience study conducted with the help of 30 researchers reveals that the researchers found this system to be very helpful. As an additional objective, we discuss two novel use cases including automatically extracting links to public datasets from the proceedings, which would further accelerate the advancement in digital libraries. The result of the framework can be exported as a whole into structured TEI-encoded documents. Our framework is accessible online at http://www.cnergres.iitkgp.ac.in/OCR++/home/.
%U https://aclanthology.org/C16-1320/
%P 3390-3400
Markdown (Informal)
[OCR++: A Robust Framework For Information Extraction from Scholarly Articles](https://aclanthology.org/C16-1320/) (Singh et al., COLING 2016)
ACL
- Mayank Singh, Barnopriyo Barua, Priyank Palod, Manvi Garg, Sidhartha Satapathy, Samuel Bushi, Kumar Ayush, Krishna Sai Rohith, Tulasi Gamidi, Pawan Goyal, and Animesh Mukherjee. 2016. OCR++: A Robust Framework For Information Extraction from Scholarly Articles. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 3390–3400, Osaka, Japan. The COLING 2016 Organizing Committee.