@inproceedings{mortensen-etal-2016-panphon,
title = "{P}an{P}hon: A Resource for Mapping {IPA} Segments to Articulatory Feature Vectors",
author = "Mortensen, David R. and
Littell, Patrick and
Bharadwaj, Akash and
Goyal, Kartik and
Dyer, Chris and
Levin, Lori",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1328/",
pages = "3475--3484",
abstract = "This paper contributes to a growing body of evidence that{---}when coupled with appropriate machine-learning techniques{--}linguistically motivated, information-rich representations can outperform one-hot encodings of linguistic data. In particular, we show that phonological features outperform character-based models. PanPhon is a database relating over 5,000 IPA segments to 21 subsegmental articulatory features. We show that this database boosts performance in various NER-related tasks. Phonologically aware, neural CRF models built on PanPhon features are able to perform better on monolingual Spanish and Turkish NER tasks that character-based models. They have also been shown to work well in transfer models (as between Uzbek and Turkish). PanPhon features also contribute measurably to Orthography-to-IPA conversion tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mortensen-etal-2016-panphon">
<titleInfo>
<title>PanPhon: A Resource for Mapping IPA Segments to Articulatory Feature Vectors</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Mortensen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Littell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akash</namePart>
<namePart type="family">Bharadwaj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kartik</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Dyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lori</namePart>
<namePart type="family">Levin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper contributes to a growing body of evidence that—when coupled with appropriate machine-learning techniques–linguistically motivated, information-rich representations can outperform one-hot encodings of linguistic data. In particular, we show that phonological features outperform character-based models. PanPhon is a database relating over 5,000 IPA segments to 21 subsegmental articulatory features. We show that this database boosts performance in various NER-related tasks. Phonologically aware, neural CRF models built on PanPhon features are able to perform better on monolingual Spanish and Turkish NER tasks that character-based models. They have also been shown to work well in transfer models (as between Uzbek and Turkish). PanPhon features also contribute measurably to Orthography-to-IPA conversion tasks.</abstract>
<identifier type="citekey">mortensen-etal-2016-panphon</identifier>
<location>
<url>https://aclanthology.org/C16-1328/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>3475</start>
<end>3484</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PanPhon: A Resource for Mapping IPA Segments to Articulatory Feature Vectors
%A Mortensen, David R.
%A Littell, Patrick
%A Bharadwaj, Akash
%A Goyal, Kartik
%A Dyer, Chris
%A Levin, Lori
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F mortensen-etal-2016-panphon
%X This paper contributes to a growing body of evidence that—when coupled with appropriate machine-learning techniques–linguistically motivated, information-rich representations can outperform one-hot encodings of linguistic data. In particular, we show that phonological features outperform character-based models. PanPhon is a database relating over 5,000 IPA segments to 21 subsegmental articulatory features. We show that this database boosts performance in various NER-related tasks. Phonologically aware, neural CRF models built on PanPhon features are able to perform better on monolingual Spanish and Turkish NER tasks that character-based models. They have also been shown to work well in transfer models (as between Uzbek and Turkish). PanPhon features also contribute measurably to Orthography-to-IPA conversion tasks.
%U https://aclanthology.org/C16-1328/
%P 3475-3484
Markdown (Informal)
[PanPhon: A Resource for Mapping IPA Segments to Articulatory Feature Vectors](https://aclanthology.org/C16-1328/) (Mortensen et al., COLING 2016)
ACL