@inproceedings{simianer-etal-2016-post,
title = "A Post-editing Interface for Immediate Adaptation in Statistical Machine Translation",
author = "Simianer, Patrick and
Karimova, Sariya and
Riezler, Stefan",
editor = "Watanabe, Hideo",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: System Demonstrations",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-2004/",
pages = "16--20",
abstract = "Adaptive machine translation (MT) systems are a promising approach for improving the effectiveness of computer-aided translation (CAT) environments. There is, however, virtually only theoretical work that examines how such a system could be implemented. We present an open source post-editing interface for adaptive statistical MT, which has in-depth monitoring capabilities and excellent expandability, and can facilitate practical studies. To this end, we designed text-based and graphical post-editing interfaces. The graphical interface offers means for displaying and editing a rich view of the MT output. Our translation systems may learn from post-edits using several weight, language model and novel translation model adaptation techniques, in part by exploiting the output of the graphical interface. In a user study we show that using the proposed interface and adaptation methods, reductions in technical effort and time can be achieved."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="simianer-etal-2016-post">
<titleInfo>
<title>A Post-editing Interface for Immediate Adaptation in Statistical Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Simianer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sariya</namePart>
<namePart type="family">Karimova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Riezler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hideo</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Adaptive machine translation (MT) systems are a promising approach for improving the effectiveness of computer-aided translation (CAT) environments. There is, however, virtually only theoretical work that examines how such a system could be implemented. We present an open source post-editing interface for adaptive statistical MT, which has in-depth monitoring capabilities and excellent expandability, and can facilitate practical studies. To this end, we designed text-based and graphical post-editing interfaces. The graphical interface offers means for displaying and editing a rich view of the MT output. Our translation systems may learn from post-edits using several weight, language model and novel translation model adaptation techniques, in part by exploiting the output of the graphical interface. In a user study we show that using the proposed interface and adaptation methods, reductions in technical effort and time can be achieved.</abstract>
<identifier type="citekey">simianer-etal-2016-post</identifier>
<location>
<url>https://aclanthology.org/C16-2004/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>16</start>
<end>20</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Post-editing Interface for Immediate Adaptation in Statistical Machine Translation
%A Simianer, Patrick
%A Karimova, Sariya
%A Riezler, Stefan
%Y Watanabe, Hideo
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F simianer-etal-2016-post
%X Adaptive machine translation (MT) systems are a promising approach for improving the effectiveness of computer-aided translation (CAT) environments. There is, however, virtually only theoretical work that examines how such a system could be implemented. We present an open source post-editing interface for adaptive statistical MT, which has in-depth monitoring capabilities and excellent expandability, and can facilitate practical studies. To this end, we designed text-based and graphical post-editing interfaces. The graphical interface offers means for displaying and editing a rich view of the MT output. Our translation systems may learn from post-edits using several weight, language model and novel translation model adaptation techniques, in part by exploiting the output of the graphical interface. In a user study we show that using the proposed interface and adaptation methods, reductions in technical effort and time can be achieved.
%U https://aclanthology.org/C16-2004/
%P 16-20
Markdown (Informal)
[A Post-editing Interface for Immediate Adaptation in Statistical Machine Translation](https://aclanthology.org/C16-2004/) (Simianer et al., COLING 2016)
ACL