@inproceedings{magnini-etal-2016-textpro,
title = "{T}ext{P}ro-{AL}: An Active Learning Platform for Flexible and Efficient Production of Training Data for {NLP} Tasks",
author = "Magnini, Bernardo and
Minard, Anne-Lyse and
Qwaider, Mohammed R. H. and
Speranza, Manuela",
editor = "Watanabe, Hideo",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: System Demonstrations",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-2028",
pages = "131--135",
abstract = "This paper presents TextPro-AL (Active Learning for Text Processing), a platform where human annotators can efficiently work to produce high quality training data for new domains and new languages exploiting Active Learning methodologies. TextPro-AL is a web-based application integrating four components: a machine learning based NLP pipeline, an annotation editor for task definition and text annotations, an incremental re-training procedure based on active learning selection from a large pool of unannotated data, and a graphical visualization of the learning status of the system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="magnini-etal-2016-textpro">
<titleInfo>
<title>TextPro-AL: An Active Learning Platform for Flexible and Efficient Production of Training Data for NLP Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bernardo</namePart>
<namePart type="family">Magnini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne-Lyse</namePart>
<namePart type="family">Minard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="given">R</namePart>
<namePart type="given">H</namePart>
<namePart type="family">Qwaider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuela</namePart>
<namePart type="family">Speranza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hideo</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents TextPro-AL (Active Learning for Text Processing), a platform where human annotators can efficiently work to produce high quality training data for new domains and new languages exploiting Active Learning methodologies. TextPro-AL is a web-based application integrating four components: a machine learning based NLP pipeline, an annotation editor for task definition and text annotations, an incremental re-training procedure based on active learning selection from a large pool of unannotated data, and a graphical visualization of the learning status of the system.</abstract>
<identifier type="citekey">magnini-etal-2016-textpro</identifier>
<location>
<url>https://aclanthology.org/C16-2028</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>131</start>
<end>135</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TextPro-AL: An Active Learning Platform for Flexible and Efficient Production of Training Data for NLP Tasks
%A Magnini, Bernardo
%A Minard, Anne-Lyse
%A Qwaider, Mohammed R. H.
%A Speranza, Manuela
%Y Watanabe, Hideo
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F magnini-etal-2016-textpro
%X This paper presents TextPro-AL (Active Learning for Text Processing), a platform where human annotators can efficiently work to produce high quality training data for new domains and new languages exploiting Active Learning methodologies. TextPro-AL is a web-based application integrating four components: a machine learning based NLP pipeline, an annotation editor for task definition and text annotations, an incremental re-training procedure based on active learning selection from a large pool of unannotated data, and a graphical visualization of the learning status of the system.
%U https://aclanthology.org/C16-2028
%P 131-135
Markdown (Informal)
[TextPro-AL: An Active Learning Platform for Flexible and Efficient Production of Training Data for NLP Tasks](https://aclanthology.org/C16-2028) (Magnini et al., COLING 2016)
ACL