CaseSummarizer: A System for Automated Summarization of Legal Texts

Seth Polsley, Pooja Jhunjhunwala, Ruihong Huang


Abstract
Attorneys, judges, and others in the justice system are constantly surrounded by large amounts of legal text, which can be difficult to manage across many cases. We present CaseSummarizer, a tool for automated text summarization of legal documents which uses standard summary methods based on word frequency augmented with additional domain-specific knowledge. Summaries are then provided through an informative interface with abbreviations, significance heat maps, and other flexible controls. It is evaluated using ROUGE and human scoring against several other summarization systems, including summary text and feedback provided by domain experts.
Anthology ID:
C16-2054
Volume:
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations
Month:
December
Year:
2016
Address:
Osaka, Japan
Editor:
Hideo Watanabe
Venue:
COLING
SIG:
Publisher:
The COLING 2016 Organizing Committee
Note:
Pages:
258–262
Language:
URL:
https://aclanthology.org/C16-2054
DOI:
Bibkey:
Cite (ACL):
Seth Polsley, Pooja Jhunjhunwala, and Ruihong Huang. 2016. CaseSummarizer: A System for Automated Summarization of Legal Texts. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations, pages 258–262, Osaka, Japan. The COLING 2016 Organizing Committee.
Cite (Informal):
CaseSummarizer: A System for Automated Summarization of Legal Texts (Polsley et al., COLING 2016)
Copy Citation:
PDF:
https://aclanthology.org/C16-2054.pdf