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Abstract

Approaches to authorship attribution, the task of identifying the author of a document, are based
on analysis of individuals’ writing style and/or preferred topics. Although the problem has been
widely explored, no previous studies have analysed the relationship between dataset character-
istics and effectiveness of different types of features. This study carries out an analysis of four
widely used datasets to explore how different types of features affect authorship attribution ac-
curacy under varying conditions. The results of the analysis are applied to authorship attribution
models based on both discrete and continuous representations. We apply the conclusions from
our analysis to an extension of an existing approach to authorship attribution and outperform the
prior state-of-the-art on two out of the four datasets used.

1 Introduction

Authorship attribution plays an important role in many applications, including plagiarism detection and
forensic investigation. Approaches to this problem attempt to identify a document’s author through
analysis of individual’s writing style and/or topics they tend to write about. The problem has been
extensively studied and a wide range of features has been explored (Stamatatos, 2013; Schwartz et al.,
2013; Seroussi et al., 2013; Hürlimann et al., 2015). However, there has been a lack of analysis of the
behavior of features across multiple datasets or using a range of classifiers. Consequently, it is difficult
to determine which types of features will be most useful for a particular authorship attribution dataset.

Authorship attribution is a unique task which is closely related to both the representation of indi-
viduals’ writing style and text categorization. In some cases, where there is a clear topical distinction
between the documents written by different authors, content-related features such as those used in text
categorization may be effective. However, style-based features are more likely to be effective for datasets
containing a more homogeneous set of topics. Previous work on feature exploration for authorship at-
tribution, focused on the overall effectiveness of features without considering the characteristics of the
datasets to which they were applied, e.g. (Grieve, 2007; Guthrie, 2008; Stamatatos, 2009; Brennan et
al., 2012; Sapkota et al., 2015). A wide range of features have been applied to the authorship attribution
problem and many previous studies concluded that using character n-grams is often effective, e.g. (Peng
et al., 2003; Koppel et al., 2011; Schwartz et al., 2013; Sapkota et al., 2015; Sari et al., 2017; Shrestha
et al., 2017). Thus, character n-grams have become the go-to features for this task to capture both an
author’s topical preferences and writing style.

This study explores how the characteristics of a dataset affect the usefulness of different types of
features for the authorship attribution task. Experiments are carried out using four datasets that have
previously been widely used for this task. Three types of features are considered: style, content and
hybrid (a mixture of the previous two types). In contrast to previous work, this study finds that character
n-grams do not perform equally well in all datasets. The analysis holds for authorship attribution models
using discrete and continuous representations. Using topic modeling and feature analysis, the most
effective features can be successfully predicted for three of the four datasets. The results of this analysis
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are applied via a novel extension of a recently proposed neural approach (Sari et al., 2017) and improved
state-of-the-art performance are obtained for two of the four datasets.

2 Related Work

Authorship attribution features are often referred to stylometric features since the main goal of the task
is often thought to be modeling the authors’ writing style. Grieve (2007) conducted experiments which
involved thirty-nine different types of textual measurements commonly used in attribution studies. His
experiments, which were performed using the Chi-squared test on The Telegraph Columnist corpus, con-
cluded that the combination of word and punctuation mark profiles are effective features for representing
authors. Similar to Grieve, Guthrie (2008) carried out an exploration of 166 features used for authorship
attribution including commonly used stylistic features and several others intended to capture emotional
tone. He reported that fifteen features, including punctuation marks, pronouns, fog index and average
sentence length to be the most useful. Stamatatos (2009) divided authorship attribution features into five
groups: lexical, character, syntactic, semantic and application-specific features. Compared to others,
lexical and character features are commonly used in authorship attribution work as they provide rich
information about the author’s topical preferences and writing style. In addition, both types of features
can be extracted in many languages and datasets with little effort.

Simple lexical features (e.g. word frequencies, word n-grams, function words, hapax legomena,
word/sentence length) have been widely used since early attribution work (Mendenhall, 1887). Func-
tion words have been proved to be effective features and several studies have reported their usefulness,
e.g. (Mosteller and Wallace, 1964; Argamon and Levitan, 2005; Koppel et al., 2005; Juola and Baayen,
2005; Zhao and Zobel, 2005). Bag-of-words approaches have also been reported as being useful for
authorship attribution (Koppel et al., 2011). These approaches are also commonly applied for sentiment
analysis and topic classification tasks (Zhang et al., 2015; Heap et al., 2017).

The usefulness of character n-grams has been highlighted in several studies including (Peng et al.,
2003; Stamatatos, 2013; Schwartz et al., 2013; Sapkota et al., 2015). Koppel et al. (2011) argued that
this effectiveness comes from their ability to capture both content and stylistic information. Similar
conclusions were reported by Sapkota et al. (2015). They analysed subgroups of character n-grams in
both single and cross-domain settings. They concluded that affixes and punctuation n-grams make a
significant contribution towards the effectiveness of character n-grams.

Our study differs from previous work in that we perform dataset analysis using topic modeling fol-
lowed by feature ablation experiments. Thus, we are able to determine the level that each type of feature
affects authorship attribution accuracy.

3 Datasets

Experiments1 are performed using four authorship attribution datasets: Judgment (Seroussi et al., 2011),
CCAT10, CCAT50 (Stamatatos, 2008), and IMDb62 (Seroussi et al., 2010). These datasets were chosen
because they are all commonly used in previous literature and represent a range of characteristics in
terms of the number of authors, topic/genre and document length (see Table 1).

Judgment CCAT10 CCAT50 IMDb62

genre legal judgments newswire movie reviews
# authors 3 10 50 62
# total documents 1,342 1,000 5,000 79,550
avg characters per document 11,957 3,089 3,058 1,401
avg words per document 2367 580 584 288

Table 1: Dataset statistics.

1Code to reproduce the experiments is available from https://github.com/yunitata/coling2018
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Judgment consists of legal judgments from three Australian High Court judges while both CCAT
datasets are subsets of Reuters Corpus Volume 1 (RCV1) (Rose et al., 2002). The IMDb62 dataset
was collected from movie reviews and message board posts of the Internet Movie database. Train/test
partitions are provided for both CCAT datasets by the respective authors. For Judgment and IMDb62 we
follow previous work (Seroussi et al., 2013) by using 10-fold cross validation in our experiments. We do
not make use of datasets from recent authorship attribution shared task events, e.g. PAN (Juola, 2012),
due to their relatively small size and fact that they provide a very small number of documents per author.

4 Dataset Analysis

The aim of this analysis is to quantify the topical similarity between authors in each of the datasets
considered. The motivation for this is that certain datasets may have clear topical preferences between
authors which cause authorship attribution to be biased towards topic classification. Therefore, topic
modeling can help assess the topical (dis-)similarity among authors. We use Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), a generative probabilistic model for text collections. Documents are repre-
sented as mixtures over latent topics, where each topic is characterized by a distribution over words.
Assuming a trained topic model over an authorship attribution dataset D, if Cα is the set of documents
written by author α and Φi is the topic distribution for the i-th document in Cα, then we estimate the
topic distribution for a particular author, θα, as follows:

θα =

|Cα|∑
i=1

Φi

|Cα|
(1)

Following this, the difference between two author’s topic probability distributions θα and θβ is calculated
using the Jensen-Shannon Divergence (JSD) (Cover and Thomas, 2006):

JSD(θα, θβ) =
1

2
DKL(θα||M) +

1

2
DKL(θβ||M) (2)

where M = 1
2(θα + θβ) and DKL is Kullback-Leibler divergence.

Table 2 shows the average of JSD for all author pairs in each of the datasets having trained a topic
model with varying numbers of topics. High JSD scores indicate more topical dis-similarity between
authors in the dataset.2 The CCAT datasets, which contain on-line news, have higher scores compared
to Judgment and IMDb62. The scores for CCAT50 and CCAT10 are similar, despite the fact that the
first dataset contains five times the number of authors of the second. The consistency of this comparison
across different numbers of topics indicates that this method of assessing content similarity between
authors is robust with respect to tuning this parameter. Judgment has the lowest score across the four
datasets indicating that the authors discuss the most similar topics. Finally, scores for the IMDb62 dataset
obtained were higher than those for Judgment but lower than both CCAT’s scores. Differences in scores
for IMDb62 are due to the authors’ preferences, as some comment on the story while others comment
on the characters of the movie. Overall, we observe that the genre of the datasets influences the topical
dis-similarity between authors.

Confusion matrices were created to further analyse the differences between authors. These matrices
were generated after running LDA with 20 topics for 1000 iterations. Similar patterns were observed
using different numbers of topics. Darker color indicates higher JSD score between two authors. In
the CCAT50 dataset (Figure 1a), one author (number 11, indicated by an arrow) has very different topic
preferences compared to the others. Articles written by author 11 mainly discuss topics related to gold,
exploration, Canada, Indonesia which are rarely picked by the other authors. A similar pattern is found
in IMDb62 (see Figure 1b), where reviews by author 16 (also indicated by an arrow) are dominated by
positive comments about movies unlike other authors who tended to write negative reviews or discuss
the story and/or the characters. However, unlike the aforementioned datasets, authors in Judgment wrote
about relatively similar topics.

2We do not assume linear scaling.



346

#topic Judgment CCAT10 CCAT50 IMDb62

3 0.0056 0.2053 0.1785 0.1000
10 0.0148 0.3010 0.2867 0.1471
20 0.0180 0.3193 0.3279 0.1617
30 0.0256 0.3414 0.3269 0.1627
40 0.0272 0.3417 0.3291 0.1681
50 0.0281 0.3403 0.3326 0.1634

Table 2: Average JS Divergence

(a) CCAT50 (train) (b) IMDb62

Figure 1: Author topic distribution (20 topics).

5 Feature Analysis

An ablation study was carried out to determine the contribution of different features for each dataset.
Following previous studies (Abbasi and Chen, 2008; Stamatatos, 2009), feature groups are divided into
three types (see Table 3):

• Style: Style-based features, such as usage of function words, digits and punctuation, capture an
author’s writing style. We used pre-defined sets of 174 function words and 12 punctuation marks.

• Content: Content-based features, e.g. bags of n-grams, represent the author’s topical preferences.
All function words are removed when extracting these features.

• Hybrid: The final feature type, hybrid, are character n-grams which are intended to capture both
writing style and topical preferences (Koppel et al., 2011; Sapkota et al., 2015).

Both character and word n-grams are limited to bi- and tri-grams. As the purpose of these ablation
experiments is not to outperform previous work, only the 100 most common n-grams are used for each
feature type.

Authorship attribution experiments were carried out using two classifiers: a single hidden layer Feed-
forward Neural Network model (FNN) and Logistic Regression (LR). The FNN hyper-parameters includ-
ing the number of neurons and dropout rates were tuned on the development set for each of the datasets.
For Judgment, CCAT10 and CCAT50, we set the number of epochs to 250 and 100 for IMDb62. For
all datasets, early stopping was used on the development sets and the models were optimized with the
Adam update rule (Kingma and Ba, 2015). Since none of the datasets have a standard development set,
we randomly selected 10% of the training data for this purpose. For LR, we found that using the default
parameters from Scikit-Learn (Pedregosa et al., 2011) resulted in comparable performances to the FNN.
Accuracy was used as the evaluation metric to measure authorship attribution performance.



347

Type Group Category # Description

Style Lexical Word-level 2 Average word length, number of short
words

Char-level 2 Percentage of digits, percentage of upper-
case letters

Letters 26 Letter frequency
Digits 10 Digit frequency
Vocabulary rich-
ness

2 Richness (hapax-legomena and dis-
legomena)

Syntactic Function words 174 Frequency of function words
Punctuation 12 Occurrence of punctuation

Content Word
n-gram

Words unigrams 100 Frequency of 100 most common word uni-
grams

Words bigrams 100 Frequency of 100 most common word bi-
grams

Word trigrams 100 Frequency of 100 most common word tri-
grams

Hybrid Char
n-gram

Char bigrams 100 Frequency of 100 most common character
bigrams

Char trigrams 100 Frequency of 100 most common character
trigrams

Table 3: Authorship attribution feature sets.

5.1 Feature Ablation Results

Results are presented in Table 4. The (−) symbol indicates that the respective feature type is excluded.
The results confirm our topic model-based analysis (see Section 4). Style-based features are more ef-
fective for datasets in which authors discuss similar topics, e.g. Judgment and IMDb62. As expected,
content-based features are generally more effective when there is more dis-similarity between the topics
discussed by the authors in the dataset, e.g. CCAT10 and CCAT50, but are of limited usefulness when the
topics are similar (particularly for the Judgment dataset). The hybrid features appear to behave similarly
to the content-based features since they are most useful when the topic dis-similarity between authors is
high.

Features
Judgment CCAT10 CCAT50 IMDb62

FNN LR FNN LR FNN LR FNN LR

all features 89.43 90.02 75.40 74.20 60.20 60.56 85.25 85.00
(–) Style -3.87 -4.32 -3.00 +0.40 -3.40 -2.60 -6.91 -8.39
(–) Content -1.43 +0.30 -3.60 -3.00 -4.52 -4.08 -2.77 -2.68
(–) Hybrid -0.83 -0.29 -3.40 -1.00 -1.28 -4.68 -2.02 -5.32

Table 4: Feature ablation results.

To examine the results further, we generated confusion matrices for the Logistic Regression (LR)
classifier applied on CCAT10 dataset (Figure 2). The effect of removing content-based features is shown
in Figure 2b where the prediction accuracy for authors Alexander Smith and Mure Dickie drops from
96% and 80% (see Figure 2a) to 84% and 64% respectively. Content-based features are essential in this
particular genre (newswire) dataset, since each author usually has different topical interests. For example,
among the ten authors in the dataset, Alexander Smith mostly discussed topic related to investment and
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(a) All features (b) (−) Content

Figure 2: Confusion Matrices of LR classifier with different features types on CCAT10.

finance, while China was dominantly written about by Mure Dickie, Benjamin Kang and Jane Macartney.
In addition, writing style between authors in this genre can be very similar. Thus, applying style-based
or hybrid features alone may not be effective.

Additional feature exploration was carried out to analyse what types of features are more important
to the classifier overall. We performed an analysis using LIME (Ribeiro et al., 2016), a model agnostic
framework for intepretability. LIME provides explanations about how a classifier made a prediction by
identifying important input features. We selected a document from each of the datasets and analysed
what kind of features were used in its prediction. Figures 3, 4, 5 and 6 present the predictions of LR
trained on 1000 word unigrams in Judgment, CCAT10, CCAT50, and IMDb62 respectively. In these
experiment function words are not removed. For each of the documents presented, LR made correct
author predictions with probability close to 100%. The darker shade indicates more important words
in the attribution prediction. In the two CCAT datasets the classifier put more weight on content-based
words such as Thomson, Canada and Toronto. In contrast, function words e.g. at, had, and, was appear
to be more salient in Judgment and IMDb62.

Figure 3: Important word unigrams features in Judgment.

Figure 4: Important word unigrams features in CCAT10.

We also observed a document in the IMDb62 dataset where the classifier assigns similar prediction
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Figure 5: Important word unigrams features in CCAT50.

Figure 6: Important word unigrams features in IMDb62.

probabilities to two authors as presented in Figure 7. The classifier put the same weight to function
words and and to which represent two different classes of authors, 26 and not 26 (the LR classifier uses
a one-versus-all scheme). The correct decision of the classifier is more likely helped by the presence of
some less significant features such as is, becomes, There, usual and could.

Figure 7: Explanation of individual predictions of Logistic Regression classifier on an IMDb62 docu-
ment using LIME. The bar chart represent the weight given to the most relevant words which are also
highlighted in the text.

6 Extending a Neural Model

These findings are further validated by applying them to a continuous n-grams-based authorship attribu-
tion model recently proposed by Sari et al. (2017). They represented a document as a bag of n-grams
features and learned the continuous representation of each feature jointly with the classifier in a shallow
feed-forward neural network (Joulin et al., 2017). Sari et al. conducted experiments with three differ-
ent feature choices: characters, words and their combination. The character-based model outperformed
the state-of-the-art on the CCAT50 and IMDb62 datasets, while producing comparable results on the
remaining two.

We extend their character-based model by incorporating each feature type (style, content and hybrid)
as an auxiliary feature represented in discrete form. Auxiliary features provide additional information
related to the dataset characteristics. Given xaux as a normalized auxiliary features frequency vector, V
is the weight applied to the features and f is the activation function (ReLu), the hidden layer h performs
the following computation:

h = f(V xaux) (3)
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The probability distribution over the label for a document then can be described as:

p(y|x) = softmax(Wout[Ax, h]) (4)

where x is the frequency vector of features for the document, A is the embedding matrix, Wout is the
weight matrix of the output layer and [Ax, h] is the concatenation of Ax and h.

All the character n-gram embeddings and hidden layer in the model were initialized using Glorot
uniform initialization (Glorot and Bengio, 2010). We used the best hyper-parameters values for each of
the datasets which have been tuned in the development set via a small grid search over all combinations
of embedding size and dropout rate (specifically dropout in the concatenation layer). The hidden size of
hidden auxiliary layer was set to 2. For the rest of the hyper-parameters, we used the values from the
baseline model (Sari et al., 2017). For Judgment, CCAT10 and CCAT50, we set the number of epochs
to 250 and 100 for IMDb62. For all datasets, early stopping was used on the development sets and the
models were optimized with the Adam update rule (Kingma and Ba, 2015).

6.1 Results
Table 5 presents the results of the experiment and compares them against previously reported ones on the
same data sets. In the bottom portion of the table it can be seen that for each of the four data sets there is at
least one feature type which leads to improved results when it is incorporated into the model. Our results
demonstrate that better performance can be achieved by taking the data characteristic into account on
choosing authorship attribution features. Moreover, the results provide evidence that character n-grams
which have been known as typical go-to features do not perform equally well in all types of datasets.
For three datasets (CCAT10, CCAT50 and IMDb62) the best result is obtained using the feature type
identified as being most useful in Section 5. However, we find that using the style features does not
improve results on the Judgment dataset as we had expected. The relatively poor performance of the
style features may be due to the baseline model (the continuous character n-grams) which effectively
captured all the author’s writing style. Thus the addition of auxiliary style features did not lead to any
improvement.

The results reported here for the CCAT50 and IMDb62 datasets outperform the previously best re-
ported results (Sari et al., 2017) and the model reported here therefore represents a new state-of-the-art
performance. The improvements for IMDb62 are statistically significant (p < 0.05, paired t-test).

7 Conclusions

This paper describes experiments on the relationship between the effectiveness of different types of
features for authorship attribution and characteristics of datasets. We find that the most effective features
for datasets can be predicted by applying topic modeling and feature analysis. Content-based features
tend to be suitable for datasets with high topical diversity such as the one constructed from on-line news.
Datasets with less topical variance, e.g. legal judgments and movie reviews, benefit more from style-
based features. The effectiveness of our proposed analysis is further validated by the performance of our
proposed neural model which achieved the state-of-the-art results on two datasets.
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Model Judgment CCAT10 CCAT50 IMDb62

Previous work
SVM with affix+punctuation 3-grams (Sapkota et
al., 2015)

- 78.80 69.30 -

SVM with 2,500 most frequent 3-grams (Plakias and
Stamatatos, 2008)

- 80.80 - -

STM-Asymmetric cross (Plakias and Stamatatos,
2008)

- 78.00 - -

SVM with bag of local histogram (Escalante et al.,
2011)

- 86.40 - -

Token SVM (Seroussi et al., 2013) 91.15 - - 92.52
Authorship attribution with topic models (Seroussi
et al., 2013)

93.64 - - 91.79

Baseline model
Continuous character n-gram (Sari et al., 2017) 91.29 74.80 72.60 94.80

Proposed model
(+) style 91.07 76.00 72.72 95.93∗
(+) content 91.51 76.20 72.88 95.59
(+) hybrid 91.21 74.80 71.76 95.26

Table 5: Results with comparison against baseline and previous work.
∗ denotes significant improvement over baseline model (p < 0.05).
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