@inproceedings{fukunaga-etal-2018-interpretation,
title = "Interpretation of Implicit Conditions in Database Search Dialogues",
author = "Fukunaga, Shunya and
Nishikawa, Hitoshi and
Tokunaga, Takenobu and
Yokono, Hikaru and
Takahashi, Tetsuro",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1040",
pages = "477--486",
abstract = "Targeting the database search dialogue, we propose to utilise information in the user utterances that do not directly mention the database (DB) field of the backend database system but are useful for constructing database queries. We call this kind of information implicit conditions. Interpreting the implicit conditions enables the dialogue system more natural and efficient in communicating with humans. We formalised the interpretation of the implicit conditions as classifying user utterances into the related DB field while identifying the evidence for that classification at the same time. Introducing this new task is one of the contributions of this paper. We implemented two models for this task: an SVM-based model and an RCNN-based model. Through the evaluation using a corpus of simulated dialogues between a real estate agent and a customer, we found that the SVM-based model showed better performance than the RCNN-based model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fukunaga-etal-2018-interpretation">
<titleInfo>
<title>Interpretation of Implicit Conditions in Database Search Dialogues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shunya</namePart>
<namePart type="family">Fukunaga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Nishikawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takenobu</namePart>
<namePart type="family">Tokunaga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hikaru</namePart>
<namePart type="family">Yokono</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tetsuro</namePart>
<namePart type="family">Takahashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Targeting the database search dialogue, we propose to utilise information in the user utterances that do not directly mention the database (DB) field of the backend database system but are useful for constructing database queries. We call this kind of information implicit conditions. Interpreting the implicit conditions enables the dialogue system more natural and efficient in communicating with humans. We formalised the interpretation of the implicit conditions as classifying user utterances into the related DB field while identifying the evidence for that classification at the same time. Introducing this new task is one of the contributions of this paper. We implemented two models for this task: an SVM-based model and an RCNN-based model. Through the evaluation using a corpus of simulated dialogues between a real estate agent and a customer, we found that the SVM-based model showed better performance than the RCNN-based model.</abstract>
<identifier type="citekey">fukunaga-etal-2018-interpretation</identifier>
<location>
<url>https://aclanthology.org/C18-1040</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>477</start>
<end>486</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interpretation of Implicit Conditions in Database Search Dialogues
%A Fukunaga, Shunya
%A Nishikawa, Hitoshi
%A Tokunaga, Takenobu
%A Yokono, Hikaru
%A Takahashi, Tetsuro
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F fukunaga-etal-2018-interpretation
%X Targeting the database search dialogue, we propose to utilise information in the user utterances that do not directly mention the database (DB) field of the backend database system but are useful for constructing database queries. We call this kind of information implicit conditions. Interpreting the implicit conditions enables the dialogue system more natural and efficient in communicating with humans. We formalised the interpretation of the implicit conditions as classifying user utterances into the related DB field while identifying the evidence for that classification at the same time. Introducing this new task is one of the contributions of this paper. We implemented two models for this task: an SVM-based model and an RCNN-based model. Through the evaluation using a corpus of simulated dialogues between a real estate agent and a customer, we found that the SVM-based model showed better performance than the RCNN-based model.
%U https://aclanthology.org/C18-1040
%P 477-486
Markdown (Informal)
[Interpretation of Implicit Conditions in Database Search Dialogues](https://aclanthology.org/C18-1040) (Fukunaga et al., COLING 2018)
ACL
- Shunya Fukunaga, Hitoshi Nishikawa, Takenobu Tokunaga, Hikaru Yokono, and Tetsuro Takahashi. 2018. Interpretation of Implicit Conditions in Database Search Dialogues. In Proceedings of the 27th International Conference on Computational Linguistics, pages 477–486, Santa Fe, New Mexico, USA. Association for Computational Linguistics.