@inproceedings{guo-etal-2018-implicit,
title = "Implicit Discourse Relation Recognition using Neural Tensor Network with Interactive Attention and Sparse Learning",
author = "Guo, Fengyu and
He, Ruifang and
Jin, Di and
Dang, Jianwu and
Wang, Longbiao and
Li, Xiangang",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1046",
pages = "547--558",
abstract = "Implicit discourse relation recognition aims to understand and annotate the latent relations between two discourse arguments, such as temporal, comparison, etc. Most previous methods encode two discourse arguments separately, the ones considering pair specific clues ignore the bidirectional interactions between two arguments and the sparsity of pair patterns. In this paper, we propose a novel neural Tensor network framework with Interactive Attention and Sparse Learning (TIASL) for implicit discourse relation recognition. (1) We mine the most correlated word pairs from two discourse arguments to model pair specific clues, and integrate them as interactive attention into argument representations produced by the bidirectional long short-term memory network. Meanwhile, (2) the neural tensor network with sparse constraint is proposed to explore the deeper and the more important pair patterns so as to fully recognize discourse relations. The experimental results on PDTB show that our proposed TIASL framework is effective.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guo-etal-2018-implicit">
<titleInfo>
<title>Implicit Discourse Relation Recognition using Neural Tensor Network with Interactive Attention and Sparse Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fengyu</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruifang</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Di</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianwu</namePart>
<namePart type="family">Dang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Longbiao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Implicit discourse relation recognition aims to understand and annotate the latent relations between two discourse arguments, such as temporal, comparison, etc. Most previous methods encode two discourse arguments separately, the ones considering pair specific clues ignore the bidirectional interactions between two arguments and the sparsity of pair patterns. In this paper, we propose a novel neural Tensor network framework with Interactive Attention and Sparse Learning (TIASL) for implicit discourse relation recognition. (1) We mine the most correlated word pairs from two discourse arguments to model pair specific clues, and integrate them as interactive attention into argument representations produced by the bidirectional long short-term memory network. Meanwhile, (2) the neural tensor network with sparse constraint is proposed to explore the deeper and the more important pair patterns so as to fully recognize discourse relations. The experimental results on PDTB show that our proposed TIASL framework is effective.</abstract>
<identifier type="citekey">guo-etal-2018-implicit</identifier>
<location>
<url>https://aclanthology.org/C18-1046</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>547</start>
<end>558</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Implicit Discourse Relation Recognition using Neural Tensor Network with Interactive Attention and Sparse Learning
%A Guo, Fengyu
%A He, Ruifang
%A Jin, Di
%A Dang, Jianwu
%A Wang, Longbiao
%A Li, Xiangang
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F guo-etal-2018-implicit
%X Implicit discourse relation recognition aims to understand and annotate the latent relations between two discourse arguments, such as temporal, comparison, etc. Most previous methods encode two discourse arguments separately, the ones considering pair specific clues ignore the bidirectional interactions between two arguments and the sparsity of pair patterns. In this paper, we propose a novel neural Tensor network framework with Interactive Attention and Sparse Learning (TIASL) for implicit discourse relation recognition. (1) We mine the most correlated word pairs from two discourse arguments to model pair specific clues, and integrate them as interactive attention into argument representations produced by the bidirectional long short-term memory network. Meanwhile, (2) the neural tensor network with sparse constraint is proposed to explore the deeper and the more important pair patterns so as to fully recognize discourse relations. The experimental results on PDTB show that our proposed TIASL framework is effective.
%U https://aclanthology.org/C18-1046
%P 547-558
Markdown (Informal)
[Implicit Discourse Relation Recognition using Neural Tensor Network with Interactive Attention and Sparse Learning](https://aclanthology.org/C18-1046) (Guo et al., COLING 2018)
ACL