@inproceedings{kim-klinger-2018-feels,
title = "Who Feels What and Why? Annotation of a Literature Corpus with Semantic Roles of Emotions",
author = "Kim, Evgeny and
Klinger, Roman",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1114",
pages = "1345--1359",
abstract = "Most approaches to emotion analysis in fictional texts focus on detecting the emotion expressed in text. We argue that this is a simplification which leads to an overgeneralized interpretation of the results, as it does not take into account who experiences an emotion and why. Emotions play a crucial role in the interaction between characters and the events they are involved in. Until today, no specific corpora that capture such an interaction were available for literature. We aim at filling this gap and present a publicly available corpus based on Project Gutenberg, REMAN (Relational EMotion ANnotation), manually annotated for spans which correspond to emotion trigger phrases and entities/events in the roles of experiencers, targets, and causes of the emotion. We provide baseline results for the automatic prediction of these relational structures and show that emotion lexicons are not able to encompass the high variability of emotion expressions and demonstrate that statistical models benefit from joint modeling of emotions with its roles in all subtasks. The corpus that we provide enables future research on the recognition of emotions and associated entities in text. It supports qualitative literary studies and digital humanities. The corpus is available at \url{http://www.ims.uni-stuttgart.de/data/reman} .",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-klinger-2018-feels">
<titleInfo>
<title>Who Feels What and Why? Annotation of a Literature Corpus with Semantic Roles of Emotions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Evgeny</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most approaches to emotion analysis in fictional texts focus on detecting the emotion expressed in text. We argue that this is a simplification which leads to an overgeneralized interpretation of the results, as it does not take into account who experiences an emotion and why. Emotions play a crucial role in the interaction between characters and the events they are involved in. Until today, no specific corpora that capture such an interaction were available for literature. We aim at filling this gap and present a publicly available corpus based on Project Gutenberg, REMAN (Relational EMotion ANnotation), manually annotated for spans which correspond to emotion trigger phrases and entities/events in the roles of experiencers, targets, and causes of the emotion. We provide baseline results for the automatic prediction of these relational structures and show that emotion lexicons are not able to encompass the high variability of emotion expressions and demonstrate that statistical models benefit from joint modeling of emotions with its roles in all subtasks. The corpus that we provide enables future research on the recognition of emotions and associated entities in text. It supports qualitative literary studies and digital humanities. The corpus is available at http://www.ims.uni-stuttgart.de/data/reman .</abstract>
<identifier type="citekey">kim-klinger-2018-feels</identifier>
<location>
<url>https://aclanthology.org/C18-1114</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>1345</start>
<end>1359</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Who Feels What and Why? Annotation of a Literature Corpus with Semantic Roles of Emotions
%A Kim, Evgeny
%A Klinger, Roman
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F kim-klinger-2018-feels
%X Most approaches to emotion analysis in fictional texts focus on detecting the emotion expressed in text. We argue that this is a simplification which leads to an overgeneralized interpretation of the results, as it does not take into account who experiences an emotion and why. Emotions play a crucial role in the interaction between characters and the events they are involved in. Until today, no specific corpora that capture such an interaction were available for literature. We aim at filling this gap and present a publicly available corpus based on Project Gutenberg, REMAN (Relational EMotion ANnotation), manually annotated for spans which correspond to emotion trigger phrases and entities/events in the roles of experiencers, targets, and causes of the emotion. We provide baseline results for the automatic prediction of these relational structures and show that emotion lexicons are not able to encompass the high variability of emotion expressions and demonstrate that statistical models benefit from joint modeling of emotions with its roles in all subtasks. The corpus that we provide enables future research on the recognition of emotions and associated entities in text. It supports qualitative literary studies and digital humanities. The corpus is available at http://www.ims.uni-stuttgart.de/data/reman .
%U https://aclanthology.org/C18-1114
%P 1345-1359
Markdown (Informal)
[Who Feels What and Why? Annotation of a Literature Corpus with Semantic Roles of Emotions](https://aclanthology.org/C18-1114) (Kim & Klinger, COLING 2018)
ACL