@inproceedings{ghaddar-langlais-2018-robust,
title = "Robust Lexical Features for Improved Neural Network Named-Entity Recognition",
author = "Ghaddar, Abbas and
Langlais, Phillippe",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1161",
pages = "1896--1907",
abstract = "Neural network approaches to Named-Entity Recognition reduce the need for carefully hand-crafted features. While some features do remain in state-of-the-art systems, lexical features have been mostly discarded, with the exception of gazetteers. In this work, we show that this is unfair: lexical features are actually quite useful. We propose to embed words and entity types into a low-dimensional vector space we train from annotated data produced by distant supervision thanks to Wikipedia. From this, we compute {---} offline {---} a feature vector representing each word. When used with a vanilla recurrent neural network model, this representation yields substantial improvements. We establish a new state-of-the-art F1 score of 87.95 on ONTONOTES 5.0, while matching state-of-the-art performance with a F1 score of 91.73 on the over-studied CONLL-2003 dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ghaddar-langlais-2018-robust">
<titleInfo>
<title>Robust Lexical Features for Improved Neural Network Named-Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abbas</namePart>
<namePart type="family">Ghaddar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phillippe</namePart>
<namePart type="family">Langlais</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural network approaches to Named-Entity Recognition reduce the need for carefully hand-crafted features. While some features do remain in state-of-the-art systems, lexical features have been mostly discarded, with the exception of gazetteers. In this work, we show that this is unfair: lexical features are actually quite useful. We propose to embed words and entity types into a low-dimensional vector space we train from annotated data produced by distant supervision thanks to Wikipedia. From this, we compute — offline — a feature vector representing each word. When used with a vanilla recurrent neural network model, this representation yields substantial improvements. We establish a new state-of-the-art F1 score of 87.95 on ONTONOTES 5.0, while matching state-of-the-art performance with a F1 score of 91.73 on the over-studied CONLL-2003 dataset.</abstract>
<identifier type="citekey">ghaddar-langlais-2018-robust</identifier>
<location>
<url>https://aclanthology.org/C18-1161</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>1896</start>
<end>1907</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Robust Lexical Features for Improved Neural Network Named-Entity Recognition
%A Ghaddar, Abbas
%A Langlais, Phillippe
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F ghaddar-langlais-2018-robust
%X Neural network approaches to Named-Entity Recognition reduce the need for carefully hand-crafted features. While some features do remain in state-of-the-art systems, lexical features have been mostly discarded, with the exception of gazetteers. In this work, we show that this is unfair: lexical features are actually quite useful. We propose to embed words and entity types into a low-dimensional vector space we train from annotated data produced by distant supervision thanks to Wikipedia. From this, we compute — offline — a feature vector representing each word. When used with a vanilla recurrent neural network model, this representation yields substantial improvements. We establish a new state-of-the-art F1 score of 87.95 on ONTONOTES 5.0, while matching state-of-the-art performance with a F1 score of 91.73 on the over-studied CONLL-2003 dataset.
%U https://aclanthology.org/C18-1161
%P 1896-1907
Markdown (Informal)
[Robust Lexical Features for Improved Neural Network Named-Entity Recognition](https://aclanthology.org/C18-1161) (Ghaddar & Langlais, COLING 2018)
ACL