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(a) “mannaka ni utsutteiru hyoushiki ha (b) “mannaka ni utsutteiru mono ha nan (c) ‘“ningen no mae ni donna kagu ga
naniiro desuka?” desuka?”’ arimasu ka?”

Figure 3: Examples of attention maps for which the proposed method predicted the correct answer but the baseline method
without cross-lingual attention maps did not. Questions: (a) What color is the road sign? (b) What is the object in the middle
of the picture? (c) What is the furniture in front of the man?

# images in training set
Method 30,536 61,072 91,609
baseline 17.1% 17.7% 18.3%
proposed 18.0% 18.8% 19.2%

Table 2: Average accuracy with varying training set sizes. Each cell contains the average accuracy over four runs. All
differences are statistically significant according to McNemar’s test.

Figure 3 shows examples of attention maps that were generated from English questions and correctly
predicted the answers for the Japanese dataset. For the same images, the baseline system without cross-
lingual attention maps predicted wrong answers. We found that the attention maps usually focused on
foreground objects and that accuracy tended to improve for images with clear foreground objects. Table
3 lists the accuracy by question type. For all question types except “why” questions, the cross-lingual
attention maps improved the performance.

Because we trained and evaluated both our model and the baseline three times, Table 2 lists the average
accuracies for each case. Our proposed model achieves 19.2% accuracy with 91,609 images in the
training set. Note that our task is much tougher than in prior work (Zhu et al., 2016; Lu et al., 2016).
In Zhu et al. (2016), the outputs are chosen from four multiple choices. While in Lu et al. (2016) the
outputs are chosen from the same top 1,000 frequently occurring answers, the coverage of this set for
their VQA corpus is 86.54%, unlike our 66.7%. The table also illustrates how the accuracy increased with
the number of training images. Our method consistently performed around 1% better than the baseline
method in all cases. As the performance increase was consistent across systems, we believe that using
cross-lingual information should also improve performance in other situations. We can also see from
Table 2 that the performance difference between the proposed method and the baseline did not decrease
as the number of training images increased, which shows the value of our method for both larger and
smaller datasets.

6 Conclusion

We have created a Japanese visual question answering (VQA) dataset comparable to the freeform ques-
tion answering portion of the Visual Genome dataset (Krishna et al., 2016). This dataset is the first such
dataset in Japanese. To show the utility of our corpus, we proposed a cross-lingual method for making
use of English annotation to improve the Japanese VQA system. The proposed method experimentally

Accuracy (%)
Method nani  dare  doko donna dorekurai  dou itsu ikutsu naze
what who where whatkind howmuch how when howmany why
baseline 199 26.1 14.4 20.3 15.5 244 53.1 18.9 5.1
proposed 21.1 27.5 15.2 21.9 17.6 258 55.2 19.1 51

Table 3: Accuracy for each of the nine Japanese question types.



performed better than simply using a monolingual corpus, which demonstrates the effectiveness of using
attention maps to transfer cross-lingual information.

While VQA is mainly a testbed for monolingual image understanding, our data together with the
original English Visual Genome allows modeling how a bilingual person understands images and two
languages, which we call bilingual image understanding. We believe the release of our dataset will add
significant resources to the research in this direction.
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