@inproceedings{fell-etal-2018-lyrics,
title = "Lyrics Segmentation: Textual Macrostructure Detection using Convolutions",
author = "Fell, Michael and
Nechaev, Yaroslav and
Cabrio, Elena and
Gandon, Fabien",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1174",
pages = "2044--2054",
abstract = "Lyrics contain repeated patterns that are correlated with the repetitions found in the music they accompany. Repetitions in song texts have been shown to enable lyrics segmentation {--} a fundamental prerequisite of automatically detecting the building blocks (e.g. chorus, verse) of a song text. In this article we improve on the state-of-the-art in lyrics segmentation by applying a convolutional neural network to the task, and experiment with novel features as a step towards deeper macrostructure detection of lyrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fell-etal-2018-lyrics">
<titleInfo>
<title>Lyrics Segmentation: Textual Macrostructure Detection using Convolutions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Fell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaroslav</namePart>
<namePart type="family">Nechaev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Cabrio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabien</namePart>
<namePart type="family">Gandon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lyrics contain repeated patterns that are correlated with the repetitions found in the music they accompany. Repetitions in song texts have been shown to enable lyrics segmentation – a fundamental prerequisite of automatically detecting the building blocks (e.g. chorus, verse) of a song text. In this article we improve on the state-of-the-art in lyrics segmentation by applying a convolutional neural network to the task, and experiment with novel features as a step towards deeper macrostructure detection of lyrics.</abstract>
<identifier type="citekey">fell-etal-2018-lyrics</identifier>
<location>
<url>https://aclanthology.org/C18-1174</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2044</start>
<end>2054</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lyrics Segmentation: Textual Macrostructure Detection using Convolutions
%A Fell, Michael
%A Nechaev, Yaroslav
%A Cabrio, Elena
%A Gandon, Fabien
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F fell-etal-2018-lyrics
%X Lyrics contain repeated patterns that are correlated with the repetitions found in the music they accompany. Repetitions in song texts have been shown to enable lyrics segmentation – a fundamental prerequisite of automatically detecting the building blocks (e.g. chorus, verse) of a song text. In this article we improve on the state-of-the-art in lyrics segmentation by applying a convolutional neural network to the task, and experiment with novel features as a step towards deeper macrostructure detection of lyrics.
%U https://aclanthology.org/C18-1174
%P 2044-2054
Markdown (Informal)
[Lyrics Segmentation: Textual Macrostructure Detection using Convolutions](https://aclanthology.org/C18-1174) (Fell et al., COLING 2018)
ACL