@inproceedings{cetto-etal-2018-graphene,
title = "{G}raphene: Semantically-Linked Propositions in Open Information Extraction",
author = "Cetto, Matthias and
Niklaus, Christina and
Freitas, Andr{\'e} and
Handschuh, Siegfried",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1195",
pages = "2300--2311",
abstract = "We present an Open Information Extraction (IE) approach that uses a two-layered transformation stage consisting of a clausal disembedding layer and a phrasal disembedding layer, together with rhetorical relation identification. In that way, we convert sentences that present a complex linguistic structure into simplified, syntactically sound sentences, from which we can extract propositions that are represented in a two-layered hierarchy in the form of core relational tuples and accompanying contextual information which are semantically linked via rhetorical relations. In a comparative evaluation, we demonstrate that our reference implementation Graphene outperforms state-of-the-art Open IE systems in the construction of correct n-ary predicate-argument structures. Moreover, we show that existing Open IE approaches can benefit from the transformation process of our framework.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cetto-etal-2018-graphene">
<titleInfo>
<title>Graphene: Semantically-Linked Propositions in Open Information Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Cetto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christina</namePart>
<namePart type="family">Niklaus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Freitas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siegfried</namePart>
<namePart type="family">Handschuh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an Open Information Extraction (IE) approach that uses a two-layered transformation stage consisting of a clausal disembedding layer and a phrasal disembedding layer, together with rhetorical relation identification. In that way, we convert sentences that present a complex linguistic structure into simplified, syntactically sound sentences, from which we can extract propositions that are represented in a two-layered hierarchy in the form of core relational tuples and accompanying contextual information which are semantically linked via rhetorical relations. In a comparative evaluation, we demonstrate that our reference implementation Graphene outperforms state-of-the-art Open IE systems in the construction of correct n-ary predicate-argument structures. Moreover, we show that existing Open IE approaches can benefit from the transformation process of our framework.</abstract>
<identifier type="citekey">cetto-etal-2018-graphene</identifier>
<location>
<url>https://aclanthology.org/C18-1195</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2300</start>
<end>2311</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Graphene: Semantically-Linked Propositions in Open Information Extraction
%A Cetto, Matthias
%A Niklaus, Christina
%A Freitas, André
%A Handschuh, Siegfried
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F cetto-etal-2018-graphene
%X We present an Open Information Extraction (IE) approach that uses a two-layered transformation stage consisting of a clausal disembedding layer and a phrasal disembedding layer, together with rhetorical relation identification. In that way, we convert sentences that present a complex linguistic structure into simplified, syntactically sound sentences, from which we can extract propositions that are represented in a two-layered hierarchy in the form of core relational tuples and accompanying contextual information which are semantically linked via rhetorical relations. In a comparative evaluation, we demonstrate that our reference implementation Graphene outperforms state-of-the-art Open IE systems in the construction of correct n-ary predicate-argument structures. Moreover, we show that existing Open IE approaches can benefit from the transformation process of our framework.
%U https://aclanthology.org/C18-1195
%P 2300-2311
Markdown (Informal)
[Graphene: Semantically-Linked Propositions in Open Information Extraction](https://aclanthology.org/C18-1195) (Cetto et al., COLING 2018)
ACL