@inproceedings{zhang-etal-2018-context,
title = "Context-Sensitive Generation of Open-Domain Conversational Responses",
author = "Zhang, Weinan and
Cui, Yiming and
Wang, Yifa and
Zhu, Qingfu and
Li, Lingzhi and
Zhou, Lianqiang and
Liu, Ting",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1206/",
pages = "2437--2447",
abstract = "Despite the success of existing works on single-turn conversation generation, taking the coherence in consideration, human conversing is actually a context-sensitive process. Inspired by the existing studies, this paper proposed the static and dynamic attention based approaches for context-sensitive generation of open-domain conversational responses. Experimental results on two public datasets show that the proposed static attention based approach outperforms all the baselines on automatic and human evaluation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-context">
<titleInfo>
<title>Context-Sensitive Generation of Open-Domain Conversational Responses</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weinan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiming</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yifa</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qingfu</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingzhi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lianqiang</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Despite the success of existing works on single-turn conversation generation, taking the coherence in consideration, human conversing is actually a context-sensitive process. Inspired by the existing studies, this paper proposed the static and dynamic attention based approaches for context-sensitive generation of open-domain conversational responses. Experimental results on two public datasets show that the proposed static attention based approach outperforms all the baselines on automatic and human evaluation.</abstract>
<identifier type="citekey">zhang-etal-2018-context</identifier>
<location>
<url>https://aclanthology.org/C18-1206/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2437</start>
<end>2447</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Context-Sensitive Generation of Open-Domain Conversational Responses
%A Zhang, Weinan
%A Cui, Yiming
%A Wang, Yifa
%A Zhu, Qingfu
%A Li, Lingzhi
%A Zhou, Lianqiang
%A Liu, Ting
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F zhang-etal-2018-context
%X Despite the success of existing works on single-turn conversation generation, taking the coherence in consideration, human conversing is actually a context-sensitive process. Inspired by the existing studies, this paper proposed the static and dynamic attention based approaches for context-sensitive generation of open-domain conversational responses. Experimental results on two public datasets show that the proposed static attention based approach outperforms all the baselines on automatic and human evaluation.
%U https://aclanthology.org/C18-1206/
%P 2437-2447
Markdown (Informal)
[Context-Sensitive Generation of Open-Domain Conversational Responses](https://aclanthology.org/C18-1206/) (Zhang et al., COLING 2018)
ACL
- Weinan Zhang, Yiming Cui, Yifa Wang, Qingfu Zhu, Lingzhi Li, Lianqiang Zhou, and Ting Liu. 2018. Context-Sensitive Generation of Open-Domain Conversational Responses. In Proceedings of the 27th International Conference on Computational Linguistics, pages 2437–2447, Santa Fe, New Mexico, USA. Association for Computational Linguistics.