@inproceedings{schulder-etal-2018-automatically,
title = "Automatically Creating a Lexicon of Verbal Polarity Shifters: Mono- and Cross-lingual Methods for {G}erman",
author = "Schulder, Marc and
Wiegand, Michael and
Ruppenhofer, Josef",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1213",
pages = "2516--2528",
abstract = "In this paper we use methods for creating a large lexicon of verbal polarity shifters and apply them to German. Polarity shifters are content words that can move the polarity of a phrase towards its opposite, such as the verb {``}abandon{''} in {``}abandon all hope{''}. This is similar to how negation words like {``}not{''} can influence polarity. Both shifters and negation are required for high precision sentiment analysis. Lists of negation words are available for many languages, but the only language for which a sizable lexicon of verbal polarity shifters exists is English. This lexicon was created by bootstrapping a sample of annotated verbs with a supervised classifier that uses a set of data- and resource-driven features. We reproduce and adapt this approach to create a German lexicon of verbal polarity shifters. Thereby, we confirm that the approach works for multiple languages. We further improve classification by leveraging cross-lingual information from the English shifter lexicon. Using this improved approach, we bootstrap a large number of German verbal polarity shifters, reducing the annotation effort drastically. The resulting German lexicon of verbal polarity shifters is made publicly available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schulder-etal-2018-automatically">
<titleInfo>
<title>Automatically Creating a Lexicon of Verbal Polarity Shifters: Mono- and Cross-lingual Methods for German</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Schulder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Wiegand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Ruppenhofer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we use methods for creating a large lexicon of verbal polarity shifters and apply them to German. Polarity shifters are content words that can move the polarity of a phrase towards its opposite, such as the verb “abandon” in “abandon all hope”. This is similar to how negation words like “not” can influence polarity. Both shifters and negation are required for high precision sentiment analysis. Lists of negation words are available for many languages, but the only language for which a sizable lexicon of verbal polarity shifters exists is English. This lexicon was created by bootstrapping a sample of annotated verbs with a supervised classifier that uses a set of data- and resource-driven features. We reproduce and adapt this approach to create a German lexicon of verbal polarity shifters. Thereby, we confirm that the approach works for multiple languages. We further improve classification by leveraging cross-lingual information from the English shifter lexicon. Using this improved approach, we bootstrap a large number of German verbal polarity shifters, reducing the annotation effort drastically. The resulting German lexicon of verbal polarity shifters is made publicly available.</abstract>
<identifier type="citekey">schulder-etal-2018-automatically</identifier>
<location>
<url>https://aclanthology.org/C18-1213</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2516</start>
<end>2528</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatically Creating a Lexicon of Verbal Polarity Shifters: Mono- and Cross-lingual Methods for German
%A Schulder, Marc
%A Wiegand, Michael
%A Ruppenhofer, Josef
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F schulder-etal-2018-automatically
%X In this paper we use methods for creating a large lexicon of verbal polarity shifters and apply them to German. Polarity shifters are content words that can move the polarity of a phrase towards its opposite, such as the verb “abandon” in “abandon all hope”. This is similar to how negation words like “not” can influence polarity. Both shifters and negation are required for high precision sentiment analysis. Lists of negation words are available for many languages, but the only language for which a sizable lexicon of verbal polarity shifters exists is English. This lexicon was created by bootstrapping a sample of annotated verbs with a supervised classifier that uses a set of data- and resource-driven features. We reproduce and adapt this approach to create a German lexicon of verbal polarity shifters. Thereby, we confirm that the approach works for multiple languages. We further improve classification by leveraging cross-lingual information from the English shifter lexicon. Using this improved approach, we bootstrap a large number of German verbal polarity shifters, reducing the annotation effort drastically. The resulting German lexicon of verbal polarity shifters is made publicly available.
%U https://aclanthology.org/C18-1213
%P 2516-2528
Markdown (Informal)
[Automatically Creating a Lexicon of Verbal Polarity Shifters: Mono- and Cross-lingual Methods for German](https://aclanthology.org/C18-1213) (Schulder et al., COLING 2018)
ACL